KaLibr校准 双目相机和IMU realsense D455

本文档详细介绍了kalibr的安装步骤及所需棋盘配置,并提供了完整的校准过程,包括灰度摄像头图像和IMU信息的数据包录制、相机校准及相机与IMU联合校准的具体命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

kalibr安装参考我的另一篇博客https://mp.csdn.net/mp_blog/creation/editor/117604718

除此之外,需要自己准备棋盘,以及棋盘的配置文件april_6x6_50x50cm.yaml

target_type: 'aprilgrid' #gridtype
tagCols: 6               #number of apriltags
tagRows: 6               #number of apriltags
tagSize: 0.055           #size of apriltag, edge to edge [m]
tagSpacing: 0.3          #ratio of space between tags to tagSize

首先录制数据包 包括两个灰度摄像头图像信息和IMU信息,录制过程中不能让棋盘出了图像范围,移动的时候不要过快,在六自由度上反复移动三次即可。

下面是录制好的图像包信息

输入命令,开始两个相机的校准

kalibr_calibrate_cameras --bag /home/mwy/桌面/第二次校准/2021-05-14-17-20-40.bag --topics /camera/infra1/image_rect_raw /camera/infra2/image_rect_raw --models pinhole-radtan pinhole-radtan --target april_6x6_50x50cm.yaml

第一个参数是数据包 第二个参数是图像话题 第三个参数是相机的模型 第四个参数是标定版(棋盘)

校准的时候报了一个错,我之前好像没安装igraph,安装就好

sudo add-apt-repository ppa:igraph/ppa   
sudo apt-get update                 
sudo apt-get install python-igraph

之后进入校准,等待片刻,漫长的等待

出来了几个文件

里面的重投影误差在0.2以内效果较好

之后进行相机与IMU的校准,准备好IMU的配置文件imu_realsense.yaml

#Accelerometers
accelerometer_noise_density: 0.2 #0.1  #0.2 #1.0e-03  #Noise density (continuous-time)
accelerometer_random_walk:   0.02 #0.001 #0.002 #0.039e-02 #Bias random walk

#Gyroscopes
gyroscope_noise_density:     0.05 #0.01 #0.05 #8.03e-05 #Noise density (continuous-time)
gyroscope_random_walk:       4.0e-5 #0.001 #4.0e-5 #4.8e-05  #Bias random walk

update_rate:                 400.0 #Hz (for discretization of the values above)
rostopic:                    /camera/imu #/imu_ns/imu/imu_filter #/imu/data

校准命令

kalibr_calibrate_imu_camera --bag /home/mwy/桌面/第二次校准/2021-05-14-17-20-40.bag --cam camchain-homemwy桌面第二次校准2021-05-14-17-20-40.yaml --imu imu_realsense.yaml --target april_6x6_50x50cm.yaml

各参数意义很明显,就不说了

这一步校准依旧是漫长的等待,出来了几个文件,同样的重投影误差在0.2以内效果较好。

校准完毕

### KalibrIMU的关系 Kalibr 是一个多传感器校准工具包,支持多种类型的传感器组合校准。对于双目相机惯性测量单元 (IMU) 的联合校准Kalibr 提供了一套完整的解决方案来估计外部参数(如位置偏移时间同步误差)以及内部参数(如IMU噪声模型)。通过这种方式,可以提高视觉-惯性里程计(VIO)系统的精度。 具体来说,在处理像RealSense D455这样的设备时,Kalibr能够同时优化摄像头内参、外参及IMU的相关特性[^1]。 ### 如何使用Kalibr进行IMU校准 为了执行IMU校准过程,首先需要准备合适的硬件设置并收集足够的数据集用于后续分析: #### 数据采集 确保连接好所有必要的传感器,并按照官方文档指导运行ROS节点记录bag文件。这些数据应该包含丰富的运动模式以便充分激发系统动态响应特征[^2]。 #### 安装依赖项 在Linux环境下安装所需软件包,包括但限于`ros-melodic-kalibr`及其依赖库。这一步骤通常涉及更新源列表并通过apt-get命令完成自动化部署。 #### 配置描述符yaml文件 创建一个配置文件定义参与校准的具体组件及其属性。例如指定使用的摄像机型号、分辨率等信息;同样也要指明所采用的IMU类型及其通信接口细节。 ```yaml cam0: topic: /camera/camera0/image_raw model: pinhole-radtan ... imu0: topic: /mavros/imu/data rate: 200.0 ``` #### 执行校准流程 利用预先录制好的bag文件作为输入调用kalibr_calibrate_imu_camera脚本启动整个计算进程。此过程中会迭代调整各部分之间的相对关系直至达到最优解为止。 ```bash kalibr_calibrate_imu_camera --target checkerboard.yaml \ --bag mydata.bag \ --models camchain-imucam.yaml imu-yaml.yaml ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值