跳台阶

本文探讨了经典的跳台阶问题,通过数学组合和递归方法解析了青蛙跳上n级台阶的不同跳法数量。展示了如何利用C(m,n)组合公式和斐波那契数列解决这一问题,并提供了C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跳台阶

题目链接

题目描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

解法描述:

要想跳上number级台阶,青蛙可以一次跳1台阶,也可以一次跳2台阶。我们可以分情况讨论,以2的个数来分,跳2台阶的次数s可以为0,1,2,…,number/2;拿number=5举例,当s=0时,有C(0,5)种情况,s=1时,有C(1,4)种情况,当s=2时,有C(2,3)种情况。各种情况相加即可。

代码描述:

class Solution {
public:
long long int c(int m,int n)
{
    if(m==0)
    {
        return 1;
    }
    long long int a=1,b=1,i;
    for(i=1;i<=m;i++)
    {
        a=a*i;
    }
    for(i=n;i>n-m;i--)
    {
        b=b*i;
    }
    return b/a;
}
    int jumpFloor(int number) {
        int i,j;
        long long int sum=0;
        for(i=0;i<=number/2;i++)
        {
            int n=number-i;
            sum+=c(i,n);
        }
        return sum;
    }
};

提醒:

当求C(m,n)时,个别用例中的函数中的阶乘结果会超过int的范围,所以尽量使用long long型整数。

解法二:

其实我们列举几个例子,会发现其实此题的答案就是斐波那契数列。所以我们可以把此题直接当为求斐波那契数列。(其实这就是简单的递归问题。利用递归思想我们可以求解,上台阶的方式只有两种,一次一阶,一次两阶,我们就直接返回jumpFloor(n-1)+jumpFloor(n-2)即可。)

代码:

class Solution {
public:
int jumpFloor(int number)
{
	if(number==1)
	{
		return 1;
	}
	else if(number==2)
	{
		return 1;
	}
	else
	{
		return jumpFloor(number-1)+jumpFloor(number-2);
	}
}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值