跳台阶
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
解法描述:
要想跳上number级台阶,青蛙可以一次跳1台阶,也可以一次跳2台阶。我们可以分情况讨论,以2的个数来分,跳2台阶的次数s可以为0,1,2,…,number/2;拿number=5举例,当s=0时,有C(0,5)种情况,s=1时,有C(1,4)种情况,当s=2时,有C(2,3)种情况。各种情况相加即可。
代码描述:
class Solution {
public:
long long int c(int m,int n)
{
if(m==0)
{
return 1;
}
long long int a=1,b=1,i;
for(i=1;i<=m;i++)
{
a=a*i;
}
for(i=n;i>n-m;i--)
{
b=b*i;
}
return b/a;
}
int jumpFloor(int number) {
int i,j;
long long int sum=0;
for(i=0;i<=number/2;i++)
{
int n=number-i;
sum+=c(i,n);
}
return sum;
}
};
提醒:
当求C(m,n)时,个别用例中的函数中的阶乘结果会超过int的范围,所以尽量使用long long型整数。
解法二:
其实我们列举几个例子,会发现其实此题的答案就是斐波那契数列。所以我们可以把此题直接当为求斐波那契数列。(其实这就是简单的递归问题。利用递归思想我们可以求解,上台阶的方式只有两种,一次一阶,一次两阶,我们就直接返回jumpFloor(n-1)+jumpFloor(n-2)即可。)
代码:
class Solution {
public:
int jumpFloor(int number)
{
if(number==1)
{
return 1;
}
else if(number==2)
{
return 1;
}
else
{
return jumpFloor(number-1)+jumpFloor(number-2);
}
}
};