题目:按摩师
题目描述:
一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
示例:
题解:
这道题可以用递归和动态规划来写(虽然我用递归超时了,但是该题还是可以练习递归思维的)。
首先说一下递归的解法。用递归首先要找到递归出口,和如何减小规模。
递归出口很明显,向量的size(我们称为n),当n为0,1,2等等都可以成为出口。但是如何减小规模呢?我们可以想到,如果选择了最后一个预约,那么倒数第二个肯定不能再选了,那么返回值就为nums[n-1]+f(n-2).如果不选最后一个预约,那么肯定返回f(n-1). 我们要比较这两个哪个比较大,然后就返回哪个。
然后再说一下动态规划的解法。其实两者的思想是差不多的,只不过递归是从后面逐渐缩小规模,而动态规划是从前面逐渐增大规模。当n=0时,返回0,当n=1时,dp[0]=nums[0],当n=2时,只能选择二者最大的,即dp[1]=max(nums[0],nums[1]),当n=3时,只能选择第一个加第三个或者只选择第二个,所以选择二者中较大者,即dp[2]=max(num[2]+dp[0],dp[1]).由此递推dp[i]=max(nums[i]+dp(i-2),dp(i-1)),最后返回dp[n-1]即可。
代码1:(递归)
class Solution {
public:
int max(int a,int b)
{
return a>b?a:b;
}
int f(vector<int>& nums,int n)
{
if(n==0)
{
return 0;
}
else if(n==1)
{
return nums[0];
}
else if(n==2)
{
return max(nums[0],nums[1]);
}
else
{
return max(nums[n-1]+f(nums,n-2),f(nums,n-1));//选择最后一个或者不选择最后一个
}
}
int massage(vector<int>& nums) {
return f(nums,nums.size());
}
};
代码2:(动态规划)
class Solution {
public:
int max(int a,int b)
{
return a>b?a:b;
}
int massage(vector<int>& nums) {
int n=nums.size();
if(n==0)
{
return 0;
}
else if(n==1)
{
return nums[0];
}
else
{
int *dp=new int[n];
dp[0]=nums[0];
dp[1]=max(nums[0],nums[1]);
int i;
for(i=2;i<n;i++)
{
dp[i]=max(dp[i-1],nums[i]+dp[i-2]);
}
return dp[n-1];
}
}
};