基于DCGAN生成手写数字--pytorch

本文详细介绍了如何使用深度卷积生成对抗网络(DCGAN)改进GAN模型,通过深度卷积网络替换全连接网络,以提高MNIST数据集图像生成的质量。展示了从数据预处理到模型训练的完整代码,并展示了训练250个epoch后的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DCGAN对GAN的改善在于使用深度卷积网络代替全连接网络

全部代码:

import torch
from torch import nn
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader,Dataset
import torchvision
import os
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

class Discirmintor(nn.Module):
    def __init__(self):
        super(Discirmintor, self).__init__()
        # 28,28,1 ---> 14,14,32
        self.conv1=nn.Conv2d(in_channels=1,out_channels=32,kernel_size=3,stride=2,padding=1)
        self.bn1=nn.BatchNorm2d(num_features=32,momentum=0.8)
        # 14,14,32 ---> 7,7,64
        self.conv2=nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3,stride=2,padding=1)
        self.bn2=nn.BatchNorm2d(num_features=64,momentum=0.8)
        # 7,7,64 ---> 3,3,128
        self.conv3=nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=2,padding=1)
        self.bn3=nn.BatchNorm2d(num_features=128,momentum=0.8)
        # 3,3,128 ---> 1,1,128
        self.avg=nn.AvgPool2d(kernel_size=3)
        self.flatten=nn.Flatten()

        self.fc=nn.Linear(128,1)
        self.lr=nn.LeakyReLU(0.2)
        self.sigmoid=nn.Sigmoid()

    def forward(self,x):
        x=x.view(-1,1,28,28)
        x=self.lr(self.bn1(self.conv1(x)))
        x=self.lr(self.bn2(self.conv2(x)))
        x=self.lr(self.bn3(self.conv3(x)))

        x=self.avg(x)
        x=x.view(-1,128)
        x=self.fc(x)
        x=self.sigmoid(x)

        return x

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.fc=nn.Linear(noise_size,7*7*256)
        # 7,7,256 ---> 14,14,128
        self.up1=nn.UpsamplingNearest2d(scale_factor=2)
        self.conv1=nn.Conv2d(in_channels=256,out_channels=128,kernel_size=3,padding=1)
        self.bn1=nn.BatchNorm2d(num_features=128,momentum=0.8)
        # 14,14,128 ---> 28,28,64
        self.up2=nn.UpsamplingNearest2d(scale_factor=2)
        self.conv2=nn.Conv2d(in_channels=128,out_channels=64,kernel_size=3,padding=1)
        self.bn2=nn.BatchNorm2d(num_features=64,momentum=0.8)
        # 28,28,64 --->28,28,3
        self.conv3=nn.Conv2d(in_channels=64,out_channels=1,kernel_size=3,padding=1)

        self.relu=nn.ReLU()
        self.tanh=nn.Tanh()

    def forward(self,x):
        x=self.fc(x)
        x=self.relu(x)
        x=x.view(-1,256,7,7)
        x=self.relu(self.bn1(self.conv1(self.up1(x))))
        x=self.relu(self.bn2(self.conv2(self.up2(x))))

        x=self.conv3(x)
        x=self.tanh(x)
        return x

def to_img(image):
    image=0.5*(image+1)
    image=torch.clamp(image,0,1)
    image=image.view(-1,28,28,1)
    return image

def save_img(fake_image,epoch):
    r, c = 5, 5
    fig, axs = plt.subplots(r, c)
    cnt = 0
    for i in range(r):
        for j in range(c):
            axs[i, j].imshow(fake_image[cnt, :, :, 0],cmap='gray')
            axs[i, j].axis('off')
            cnt += 1
    fig.savefig("images/DCGAN-Mnist/epoch_{}.png".format(epoch + 1))
    plt.close()

def train(epochs):
    for epoch in range(epochs):
        for idx,(img,_) in enumerate(dataloader):
            img=img.to(device)
            num_img=img.size(0)

            real_img=img.view(num_img,-1)
            real_label=torch.ones(num_img,1)
            real_label=real_label.to(device)

            fake_img=torch.randn(num_img,noise_size)
            fake_img=fake_img.to(device)
            fake_label=torch.zeros(num_img,1)
            fake_label=fake_label.to(device)

            # 训练判别器
            real_out=D(real_img)
            d_loss_real=criterion(real_out,real_label)

            fake_img=G(fake_img).detach()
            fake_out=D(fake_img)
            d_loss_fake=criterion(fake_out,fake_label)

            d_loss=d_loss_real+d_loss_fake

            optimizer_D.zero_grad()
            d_loss.backward()
            optimizer_D.step()

            # 训练生成器
            fake_img=torch.randn(num_img,noise_size)
            fake_img=fake_img.to(device)

            fake_img=G(fake_img)
            fake_out=D(fake_img)
            g_loss=criterion(fake_out,real_label)

            optimizer_G.zero_grad()
            g_loss.backward()
            optimizer_G.step()

        print('epoch :{}, d_loss:{}, g_loss:{} '.format(epoch,d_loss.item(),g_loss.item()))
        fake_image=to_img(fake_img.cpu().data)
        save_img(fake_image,epoch)

        torch.save(D.state_dict(), 'models/DCGAN-Mnist/discrimintor.pth')
        torch.save(G.state_dict(),'models/DCGAN-Mnist/generator.pth')

if __name__ == '__main__':
    transformer = torchvision.transforms.Compose([
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize((0.5,), (0.5,))
    ])
    dataset=MNIST(root='mnist',train=True,transform=transformer,download=True)
    dataloader=DataLoader(dataset=dataset,shuffle=True,batch_size=512)
    epoch=500
    noise_size=100

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    D = Discirmintor()
    G = Generator()
    D = D.to(device)
    G = G.to(device)
    criterion = nn.BCELoss()
    optimizer_G = torch.optim.Adam(G.parameters(), lr=0.0003)
    optimizer_D = torch.optim.Adam(D.parameters(), lr=0.0001)

    train(epoch)

训练250个epoch的结果
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值