fairseq常用的命令行参数

文章详细介绍了fairseq库在训练神经网络模型时的参数设置,包括tensorboard-logdir的可视化,bleu评估指标的使用,以及最佳检查点的选择策略。此外,还涵盖了fairseq在生成、评分和交互式模式下的命令行选项,如beamsearch,bpe处理和不同语言对的处理方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fairseq-train

--tensorboard-logdir   #可视化训练过程
--keep-last-epochs 10  # 默认保存最后10个epoch
--eval-bleu            # 在验证阶段评估bleu
--eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}'      # 评估bleu的参数
--eval-bleu-detok moses   # 验证阶段时使用moses工具来进行detokenize
--eval-bleu-remove-bpe  # 在验证阶段评估bleu时 remove-bpe
--best-checkpoint-metric bleu # 选择best-checkpoint的策略,默认是loss最低,这里使用bleu
--maximize-best-checkpoint-metric  # 最大化选择best-checkpoint的策略,在使用bleu时使用
--patience 10  			# 如果连续10次验证运行的有效性能没有提高,则提前停止训练

fairseq-generate

--beam 5  # 解码时beam search设置为5
--remove-bpe # 生成remove bpe之后的结果
--scoring sacrebleu  # 默认使用bleu
--sacrebleu   # 效果同上
--quiet       # 只打印最终成绩

fairseq-score

-s, --sys   # 机器翻译模型的输出
-r, --ref   # 目标语句
-o, --order  # n-gram的阶数,默认为4
--ignore-case   # 大小写敏感的分数
--sacrebleu     # 使用sacrebleu
--sentence-bleu    # 报告句子级别的BLEU

fairseq-interactive

--path    # 模型checkpoint的路径
data
--beam    # beam size
--source-lang  # 源语言类型
--target-lang  # 目标语言类型
--tokenizer    # 使用的tokenizer,可以选择使用 moses、nltk和space
--bpe          # 使用的bpe,可以选择用 byte_bpe、bytes、characters、fastbpe、gpt2、bert、hf_byte_bpe、sentencepiece、 subword_nmt
--bpe-codes   # 指定训练得到的bpe-codes
--max-len-a   # 生成的最大长度为 ax+b(x是源序列长度),这里指定a,默认为0
--max-len-b   # 生成的最大长度为 ax+b(x是源序列长度),这里指定b,默认为200
--min-len     # 最小生成长度,默认为1

03-26
### Fairseq 使用教程及项目地址 Fairseq 是由 Facebook AI 研究团队开发的一个高性能序列到序列 (Seq2Seq) 学习框架,广泛应用于机器翻译、文本生成以及其他自然语言处理任务的研究与开发[^2]。 #### 1. 安装方式 Fairseq 提供两种主要的安装方法: - **pip 安装**: 用户可以通过 Python 的包管理工具 `pip` 来快速安装 Fairseq。这种方式适合希望快速上手而不关心底层实现细节的用户[^3]。 ```bash pip install fairseq ``` - **源码安装**: 如果需要自定义功能或者参与项目的开发工作,则推荐通过克隆仓库并编译的方式进行安装。此方法允许开发者修改代码以满足特定需求。 ```bash git clone https://github.com/pytorch/fairseq.git cd fairseq pip install --editable . ``` #### 2. 主要命令工具 Fairseq 配备了一系列强大的命令行工具来支持数据预处理、模型训练以及推理等功能: - **fairseq-preprocess**: 数据预处理工具,用于准备输入数据集以便后续训练过程使用。 - **fairseq-train**: 训练神经网络模型的核心脚本。 - **fairseq-generate**: 利用已训练好的模型生成目标语句或其他形式的结果。 - **fairseq-interactive**: 实现交互式的预测模式,方便调试和测试新样本。 - **fairseq-score**: 对齐两个文件中的句子并对它们评分。 - **fairseq-eval-lm**: 评估语言模型性能。 #### 3. GitHub 项目地址 以下是 Fairseq 和其更新版本 Fairseq2 的官方 GitHub 地址: - Fairseq: [https://gitcode.com/gh_mirrors/fa/fairseq](https://gitcode.com/gh_mirrors/fa/fairseq) - Fairseq2: [https://gitcode.com/gh_mirrors/fa/fairseq2](https://gitcode.com/gh_mirrors/fa/fairseq2)[^1] 这些链接提供了完整的文档说明和技术支持资源,帮助使用者更好地理解和应用该框架。 ```python import torch from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils # 加载预训练模型 model_name_or_path = 'path/to/model' models, cfg, task = checkpoint_utils.load_model_ensemble_and_task([model_name_or_path]) # 设置设备为 GPU 或 CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') for model in models: model.to(device) # 构建字典映射表 generator = task.build_generator(models, cfg.generation) ``` 以上是一个简单的例子展示如何加载 Fairseq 中保存下来的模型,并将其部署至指定硬件平台上运行推断操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值