【机器学习】逻辑回归

本文详细介绍了逻辑回归的基础理论,包括公式、sigmoid函数、优缺点、损失函数及偏导数推导,还涉及正则化和多分类方法。通过Python基础代码和sklearn库展示了逻辑回归的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 逻辑回归基础理论

逻辑回归(Logistic regression)又叫对数几率回归,是一个分类模型。主要进行二分类。在线性回归的基础上进行一个sigmoid变换,于是得到逻辑回归模型。逻辑回归输出值在(0,1) 之间,直观含义是y=1的概率。

逻辑回归假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。

1.1 公式

y=11+e−(θTX+b)y = \frac{1}{1+e^{-(\theta^TX+b)}} y=1+e(θTX+b)1
也可以写成:
lny1−y=θTX+b ln\frac{y}{1-y} = \theta^TX +bln1yy=θTX+b
从上式可以看出,逻辑回归实际是用线性回归拟合真实标签的对数几率。
 
 

1.2 sigmoid函数

理想的二分类函数为阶跃函数,然而其不连续,于是找到一定程度上近似单位阶跃函数的替代函数,并希望它单调可微。
g(z)=11+e−z g(z) = \frac{1}{1+e^{-z}}g(z)=1+ez1
sigmoid函数
sigmoid函数的特点是

  1. 取值永远在0,1之间
  2. 输出值在z=0附近变化陡峭,远离0时变化平缓

 

1.3 逻辑回归的优缺点和适用数据

优点:模型简单简单,可解释性强。计算速度快,存储资源底。对线性关系拟合效果好。
缺点:容易欠拟合,分类精度可能不高。因为本质是线性分类器,无法应对较为复杂的数据。
适用数据:数值型和标称型数据。
 

1.4 损失函数

虽然逻辑回归源于线性回归,但是并不会用线性回归的MSE作为损失函数,因为如果使用MSE的话得到的是一个非凸函数(non-convexfunction),这将影响梯度下降算法寻找全局最小值。

逻辑回归的参数估计方法为极大似然法(maximum likelihood method),即令每个样本属于其真实标签的概率越大越好。
m个样本服从伯努利分布,其概率密度函数为:
p(y∣x,θ)=hθ(x)y(1−hθ(x))1−yp(y|x,\theta)=h_\theta(x)^y(1-h_\theta(x))^{1-y}p(yx,θ)=hθ(x)y(1hθ(x))1y
极大似然即为求联合概率密度最大值:

L(θ)=∏i=1mp(yi∣xi,θ)L(\theta)=\prod_{i=1}^m p(y_i|x_i,\theta)L(θ)=i=1mp(yixi,θ)

负对数似然函数即为损失函数,表达式为:
J(θ)=−1m∑i=0m(yi∗log(hθ(xi))+(1−yi)∗log(1−hθ(xi)))J(\theta) = - \frac{1}{m}\sum_{i=0}^m (y_i *log(h_\theta(x_i))+ (1-y_i) *log(1-h_\theta(x_i))) J(θ)=m1i=0m(yilog(hθ(xi))+(1yi)log(1hθ(xi)))
其中,m表示样本数,yiy_iyi是真实标签,hθ(xi)h_\theta(x_i)hθ(xi)是基于参数θ的预测值。

该损失函数的优化方法最常见的有梯度下降法,坐标轴下降法,等牛顿法·等。
梯度下降算法为:

Repeat : { θj:=θj−α∂∂θjJ(θ)\theta_j := \theta_j -\alpha\frac{\partial}{\partial \theta_j}J(\theta)θj:=θjαθjJ(θ)} (θ\thetaθ所有分量同时更新)

 

1.5 偏导数的推导

(yi∗log(hθ(xi))+(1−yi∗log(1−hθ(xi))(y_i *log(h_\theta(x_i))+ (1-y_i *log(1-h_\theta(x_i))(yi​<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值