LeetCode 10. 正则表达式匹配(Python)

本文通过一个具体实例详细介绍了如何使用动态规划解决字符串匹配问题,重点分析了状态转移方程及特殊情况处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

学习动态规划的应用

文章目录

解题思路

官方解法

针对p[j-1] == '*'时,f[i][j] |= f[i][j-2]是因为只要当前j-1指向*时,

  • 如果不匹配 s s s中的字符,则丢弃 ∗ * 号组合
  • 若匹配,则也可以丢弃 ∗ * 号组合
    在这里插入图片描述
class Solution:
    def isMatch(self, s: str, p: str) -> bool:
        m, n = len(s), len(p)

        def match(i: int, j: int) -> bool:
            # 前0个字符为空字符,直接返回False
            if i == 0:
                return False
            if p[j-1] == '.':
                return True
            return s[i-1] == p[j-1]

        # 状态矩阵, f[i][j]表示s的前i个字符和p的前j个字符是否匹配
        f = [[False] * (n+1) for i in range(m+1)]
        # 两个空字符串直接匹配
        f[0][0] = True

        for i in range(m+1):
            for j in range(1, n+1):
                if p[j-1] == '*':
                    f[i][j] |= f[i][j-2]
                    if match(i, j-1):
                        f[i][j] |= f[i-1][j]
                else:
                    if match(i, j):
                        f[i][j] |= f[i-1][j-1]

        return f[m][n]

在这里插入图片描述
复杂度分析

  • 时间复杂度: O ( m n ) O(mn) O(mn),其中 m m m n n n 分别是字符串 s s s p p p的长度。我们需要计算出所有的状态,并且每个状态在进行转移时的时间复杂度为 O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( m n ) O(mn) O(mn),即为存储所有状态使用的空间。
### 正则表达式匹配规则 正则表达式是一种用于描述字符串模式的语言,广泛应用于各种编程语言中。对于Java和JavaScript环境下HTML标签的匹配[^1]以及更通用的支持`.`和`*`元字符的正则表达式匹配问题[^2],遵循特定的语法结构。 #### 基础符号解释 - `.`:表示任何单一字符(除了换行符) - `*`:指示前一元素可以出现零次或多次 - `+`:意味着前一个字符至少要出现一次 - `?`:表明前一个字符是可选的,即可能出现也可能不出现 - `[abc]`:方括号内的任一字符都会被接受作为有效输入的一部分 - `(exp)`:圆括号用来分组表达式,影响优先级 针对带有特殊字符`.`和`*`的情况,在LeetCode10题中提到,当遇到星号时,它允许其前面的一个字符重复任意次数甚至不存在;而句点能够代表除换行外的任何一个字符。 ```python def isMatch(s, p): dp = [[False] * (len(p) + 1) for _ in range(len(s) + 1)] dp[-1][-1] = True for i in range(len(s), -1, -1): for j in range(len(p) - 1, -1, -1): first_match = i < len(s) and p[j] in {s[i], '.'} if j+1 < len(p) and p[j+1] == '*': dp[i][j] = dp[i][j+2] or first_match and dp[i+1][j] else: dp[i][j] = first_match and dp[i+1][j+1] return dp[0][0] ``` 这段Python代码实现了基于动态规划算法来判断给定字符串`s`是否能完全由模式串`p`所定义的规则进行匹配[^3]。这里的关键在于构建二维布尔型列表`dp[][]`,其中每一个位置记录着对应子序列之间的关系状态。 通过上述方式解决了复杂度较高的正则表达式匹配难题,并且有效地利用了记忆化技术减少了不必要的重复运算过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值