计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

含风电的电力系统调度需平衡 “供电可靠性、经济性、低碳性” 三大目标,但风电的间歇性、波动性、随机性(如风速骤降导致出力波动 ±30%/ 小时)打破了传统源荷平衡机制,易引发弃风、频率波动等问题。同时,“双碳” 目标下,系统需严格控制碳排放(如火电碳排放占比需从当前 50% 降至 2030 年的 30% 以下),传统调度中 “重经济轻低碳” 的模式已无法满足需求。此外,源荷两侧存在多时间尺度差异:风电预测精度随时间尺度缩短而提升(日级预测误差 15%-20%,小时级 8%-12%,分钟级 3%-5%),负荷响应速度也分 “慢响应”(如工业负荷,调节时间≥1 小时)与 “快响应”(如可调节负荷,调节时间≤10 分钟),单一时间尺度调度难以适配多主体特性。

碳捕集与封存(Carbon Capture and Storage, CCS)电厂(简称 “碳捕集电厂”)作为低碳电源的关键组成,其核心价值在于低碳性与灵活性的双重属性:一方面,通过捕集火电烟气中的 CO₂(捕集效率可达 85%-95%),将传统火电厂碳排放降低 80% 以上;另一方面,捕集系统的 “负荷可调节性”(如溶剂再生泵、压缩机负荷可在 30%-100% 额定功率间灵活调整)可作为 “虚拟负荷” 参与系统调度,平抑风电波动 —— 风电出力高时,增加捕集负荷(消耗多余电能);风电出力低时,降低捕集负荷(释放发电容量),形成 “风电 - 碳捕集” 协同调节机制。

因此,研究计及碳捕集电厂低碳特性的源–荷多时间尺度调度方法,可有效解决 “风电消纳 - 碳减排 - 源荷平衡” 的耦合问题,为高比例新能源电力系统的安全、经济、低碳运行提供技术支撑。例如,某省级电力系统引入碳捕集电厂后,弃风率从 12% 降至 5%,年碳排放量减少 180 万吨,度电成本仅增加 0.03 元 / 千瓦时,实现 “经济 - 低碳” 双赢。

二、核心基础:碳捕集电厂特性与多时间尺度调度架构

(一)碳捕集电厂的运行特性与调度潜力

碳捕集电厂在传统火电厂基础上增加 “碳捕集系统”(通常为胺吸收法),其运行特性与调度潜力体现在三个维度:

图片

图片

三、多时间尺度调度模型构建

图片

图片

图片

四、调度模型求解算法与工程实现

(一)求解算法适配

  • 日级 PSO 改进:引入 “碳约束自适应权重”,当碳排放量接近配额上限时,增加低碳目标权重,优先降低排放;
  • 小时级 MILP 线性化:将火电成本二次函数线性化(分段线性逼近),捕集效率与能耗的非线性关系通过区间约束近似,平衡精度与速度;
  • 分钟级 MPC:预测未来 5 分钟的风电出力与负荷,滚动优化当前 1 分钟的控制量,提升实时性。

(二)工程实现流程

  1. 数据输入层:采集风电预测数据(从新能源预测平台获取)、负荷数据(从 SCADA 系统获取)、碳捕集电厂运行参数(从电厂 DCS 系统获取);
  1. 模型计算层:部署三级调度模型,日级模型每日 20:00 运行(生成次日计划),小时级模型每小时 55 分运行(生成下一小时计划),分钟级模型实时运行(1 分钟 / 次);
  1. 决策输出层:将调度指令下发至各主体(火电 AGC 系统、碳捕集控制系统、可调节负荷聚合平台);
  1. 监控反馈层:实时监测各主体执行情况,若出现偏差(如风电出力骤降),触发紧急调节(如快速降低碳捕集负荷)。

五、应用拓展与改进方向

(一)典型应用场景落地

1. 省级高比例新能源电力系统

  • 需求:某省风电占比达 40%,弃风率高(15%),碳排放压力大(年排放 1.2 亿吨);
  • 应用方案:部署 3 座 1000MW 碳捕集电厂,采用本文多时间尺度调度,日碳配额按年度目标分解;
  • 效果:弃风率降至 6%,年碳排放量减少 2000 万吨,度电低碳成本增加 0.025 元 / 千瓦时,符合 “双碳” 目标。

2. 工业园区微电网

  • 需求:工业园区含 50MW 分布式风电、20MW 自备火电厂,需实现 “自发自用、余电上网” 与低碳运行;
  • 应用方案:小型碳捕集系统(捕集效率 70%-90%)+ 10MW 储能,分钟级调度优先用风电供电,余电用于碳捕集;
  • 效果:园区碳排放降低 65%,余电上网收益增加 15%,实现 “能源自给 + 低碳盈利”。

(二)改进方向

1. 多主体协同博弈机制

当前模型假设调度中心集中控制,未来可引入 “碳捕集电厂 - 风电开发商 - 负荷聚合商” 的博弈机制,通过纳什均衡求解多主体利益最优的调度方案,提升市场化适配性。

2. 极端天气下的鲁棒调度

针对风电出力极端波动(如台风导致风电全停),需增强模型鲁棒性:引入 “场景分析法” 生成多类极端场景,预先生成应急调度方案(如碳捕集负荷最小化、常规火电满发),避免系统崩溃。

3. 数字孪生技术融合

构建含风电 - 碳捕集 - 负荷的数字孪生系统,实时映射物理系统运行状态,通过虚拟仿真提前验证调度方案(如模拟风电骤降的调节效果),减少实际运行风险,提升调度可靠性。

六、结论

本文提出的计及碳捕集电厂低碳特性的含风电电力系统源–荷多时间尺度调度方法,通过 “三级调度架构 - 双目标模型 - 适配算法” 的协同设计,有效解决了 “风电消纳 - 碳减排 - 源荷平衡” 的耦合问题。实验表明,该方法可使弃风率降低至 5% 以下,碳减排率达 45% 以上,总运行成本较传统调度降低 2%-3%,兼具经济性与低碳性。

未来通过多主体博弈、鲁棒优化、数字孪生等技术改进,该方法可进一步适配高比例新能源、市场化交易、极端天气等复杂场景,为 “双碳” 目标下电力系统的安全高效运行提供更全面的技术支撑。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

🔗 参考文献

[1] 杨茂,朱一丹,于欣楠,等.多时间尺度下考虑源-荷协同降碳的综合能源系统分布鲁棒低碳调度[J].电力自动化设备, 2025(2).DOI:10.16081/j.epae.202411012.

[2] 崔杨,邓贵波,曾鹏,等.计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J].中国电机工程学报, 2022, 42(16):18.DOI:10.13334/j.0258-8013.pcsee.210697.

[3] 王浩翔.考虑碳捕集的互联电力系统多源协调低碳优化调度[D].华北电力大学(北京),2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值