✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电液伺服执行器作为一种集机械、液压与电控技术于一体的高精度驱动装置,凭借其响应速度快、输出功率大、控制精度高的优势,广泛应用于航空航天、冶金制造、工程机械、精密机床等关键领域。例如,在航空发动机燃油调节系统中,电液伺服执行器需精准控制燃油阀门开度,直接影响发动机的推力输出与运行稳定性;在液压机控制系统中,其需实现对压制力和位移的实时调节,保障产品加工精度。
然而,电液伺服系统存在非线性特性(如阀口流量非线性、液压油压缩性、摩擦力等)和外部扰动(如负载变化、油温波动),易导致系统控制精度下降、动态响应滞后甚至出现振荡。PI(比例 - 积分)控制器作为经典的线性控制算法,具有结构简单、参数易于整定、无静差的特点,能够通过比例环节快速响应偏差,积分环节消除稳态误差,成为改善电液伺服执行器控制性能的重要手段。
开展带有 PI 控制器的电液伺服执行器模拟研究,不仅能揭示 PI 参数与系统动态性能(响应速度、超调量)、稳态性能(稳态误差)的内在关联,还能为实际系统的控制器参数整定提供理论依据,降低实验成本与风险,具有重要的理论价值和工程实用意义。
二、电液伺服执行器与 PI 控制器的工作原理
2.1 电液伺服执行器的组成与工作流程
电液伺服执行器主要由电液伺服阀、液压执行机构(液压缸或液压马达)、位移 / 速度传感器、信号调理电路四部分组成,其核心工作流程如下:
- 指令输入:控制系统发出目标位移 / 速度指令(如电压信号),与传感器反馈的实际状态信号进行比较,得到偏差信号;
- 信号放大与转换:偏差信号经信号调理电路放大后,输入电液伺服阀的电磁线圈,将电信号转换为阀芯的机械位移;
- 液压动力放大:伺服阀阀芯位移改变阀口开度,控制高压液压油的流量和方向,将低压电信号的能量放大为高压液压能;
- 执行机构动作:高压油进入液压缸(或液压马达)的无杆腔 / 有杆腔,推动活塞(或转子)运动,实现目标位移 / 速度输出;
- 闭环反馈:位移 / 速度传感器实时采集执行机构的实际状态,将反馈信号传回输入端,形成闭环控制,直至偏差信号趋近于零。
三、系统数学建模与模拟平台搭建
四、模拟结果分析与 PI 参数整定
五、非线性因素与鲁棒性分析
六、结论与展望
⛳️ 运行结果
🔗 参考文献
[1] 段瑞玲,李玉和,李庆祥.精密伺服工作台的模糊-PI复合控制的设计与仿真[J].计算机测量与控制, 2006, 14(6):3.DOI:10.3321/j.issn:1671-4598.2006.06.018.
[2] 魏建华,国凯,熊义.大型装备多轴电液执行器同步控制[J].浙江大学学报:工学版, 2013(5):6.DOI:10.3785/j.issn.1008-973X.2013.05.003.
[3] 黄斌,王永生.基于PI控制器的船舶加速过程负荷控制[J].西南交通大学学报, 2012, 47(5):842-848.DOI:10.3969/j.issn.0258-2724.2012.05.018.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇