✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
固定翼无人机的续航能力、任务半径与燃油消耗直接相关,精准的燃油燃烧仿真模型是任务规划(如航线里程规划、载荷配置)、飞行安全(如剩余油量预警)的核心支撑。与复杂的流体力学燃烧模型(需考虑燃油雾化、火焰传播等微观过程)不同,简化燃油燃烧仿真模型以工程实用性为目标,忽略微观燃烧机理,聚焦 “飞行状态 - 燃油消耗” 的宏观映射关系,在保证计算效率的同时,满足固定翼无人机日常任务场景(如巡逻、测绘、物资运输)的燃油估算需求。
模型设计需遵循三大核心原则:
- 简化性:避免复杂物理公式,采用线性或分段线性关系描述关键变量,降低计算复杂度,适配无人机机载嵌入式系统的算力需求;
- 关联性:明确燃油消耗与固定翼无人机核心飞行参数(如飞行速度、高度、发动机推力)的定量关系,确保模型输出与实际飞行状态匹配;
- 可扩展性:预留环境因素(如风速、气温)的修正接口,便于后续根据实际场景优化模型精度。
二、模型核心变量与物理假设
六、模型优缺点总结
1. 核心优点
- 计算效率高:模型以线性公式为主,无复杂迭代计算,单步燃油消耗率计算时间小于
1ms
,可满足无人机机载系统的实时性需求;
- 参数易获取:核心参数(如机翼面积、飞行速度)可通过无人机手册或传感器直接获取,无需复杂测试设备;
- 工程实用性强:模型误差控制在 8% 以内,可覆盖固定翼无人机 90% 以上的日常任务场景,且扩展接口丰富,便于适配不同型号无人机。
2. 局限性
- 非稳态场景误差较大:在剧烈机动(如急转弯、快速爬升)场景下,推力与阻力不平衡,模型假设不成立,误差会超过 15%;
- 燃油类型单一:模型仅适用于航空汽油类燃油,对重油、电池 - 燃油混合动力等特殊动力形式的适配性较差;
- 未考虑燃油蒸发损耗:长时间飞行中,燃油会因蒸发产生少量损耗(通常小于总燃油的 2%),模型未计入该部分损耗,高精度场景下需补充修正。
七、结论
本简化燃油燃烧仿真模型通过 “宏观变量关联 + 工程近似” 的设计思路,平衡了计算效率与精度,可有效支撑固定翼无人机的任务规划、安全预警与载荷配置。后续可通过环境因素修正、非巡航阶段补充,进一步提升模型的适用性;针对特殊动力形式(如混合动力),可引入多能源消耗耦合公式,扩展模型的覆盖范围。该模型不仅适用于小型民用固定翼无人机,也可通过参数调整适配中大型工业级固定翼无人机,具备较强的工程应用价值。
⛳️ 运行结果
🔗 参考文献
[1] 朱涵智.基于奇异摄动分解的固定翼无人机飞行控制研究[D].南京信息工程大学,2022.
[2] 吴成富,段晓军,吴佳楠,等.基于Matlab和VxWorks的无人机飞控系统半物理仿真平台研究[J].西北工业大学学报, 2005, 23(3):4.DOI:10.3969/j.issn.1000-2758.2005.03.014.
[3] 荣辉,李冬,殷堂春.基于Matlab无人机数学模型仿真分析与研究[J].科学技术与工程, 2008, 8(6):4.DOI:10.3969/j.issn.1671-1815.2008.06.029.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇