相关申明及相关参考:笔记仅作学习参考
此部分前阶段学习的,因此部分出入有所纰漏,如有侵权,请联系删除。
目录
卷积神经网络(Convolutional Neural Network,CNN)
激活函数RelU (Rectified Linear Units)
卷积神经网络(Convolutional Neural Network,CNN)
卷积
神经网络不再对每个像素信息做处理,而是对图片每一小块像素区域做处理,这种做法加强了信息的连续性。神经网络能够看到一个图形而不是一个点,同时加深神经网络对图片的理解。
具体:批量过滤器在图片上滚动收集图片上的信息,每一次收集的都是像素区域,再整理总结,再滚动收集……
Eg.图像拥有长宽高,其中高表示图片的颜色信息黑白高度1 彩色高度3
批量过滤器,每次长宽压缩,高度增加,对输入图片更深的理解
- convolution卷积层:主要作用是保留图片的特征
- pooling池化层:主要作用是把数据降维,可以有效的避免过拟合
- Full connected 全连接层:根据不同任务输出我们想要的结果
- classifier 分类预测
卷积核(滤波器,convolution kernel)
是可以用来提取特征的图像和卷积核卷积,就可以得到特征值,就是destination value特征提取。
卷积核放在神经网络里,就代表对应的权重(weight)
卷积核和图像点乘(dot product),就代表卷积核里的权重单独对相应位置的Pixel作用
这里强调点乘,虽说称为卷积,实际上是位置一一对应的点乘,不是真正意义的卷积:比如图像位置(1,1)乘以卷积核位置(1,1),仔细观察图右上角。
点乘完所有结果加起来=所有作用效果叠加起来。
神经网络公式 
卷积运算方式及各部分介绍
从左到右,每隔x列Pixel,向右移动一次卷积核进行卷积,当已经到最右,从上到下,每隔x行pixel,向下移动一次卷积核,移动完成,再继续如上所述,即先从左到右,再从上到下,直到所有pixels都被卷积核过一遍,则完成输入图片的第一层卷积层的特征提取。
这里的x叫作stride,就是步长,如果x = 2,就是相当每隔两行或者两列进行卷积。
补0(zero padding)
分量的pixel外面围一圈0,称之为补0(zero padding),同样是stride x=1的情况下,补0比原来没有添0的情况下进行卷积,从左到右,从上到下都多赚了2次卷积,这样第一层卷积层输出的特征图(feature map)仍然为5x5,和输入图片的大小一致,而没有添0的第一层卷积层输出特征图大小为3x3。