深度学习基础笔记——卷积神经网络概念及其计算方式

本文详细介绍了卷积神经网络(CNN)的基础知识,包括卷积、滤波器、步长、填充、池化、ReLU激活函数、全连接层及其计算细节。还探讨了AlexNet、VGGNet和ResNet等经典模型的特点和结构,展示了如何通过这些技术处理图像特征并进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关申明及相关参考:笔记仅作学习参考

此部分前阶段学习的,因此部分出入有所纰漏,如有侵权,请联系删除。

目录

卷积神经网络(Convolutional Neural Network,CNN)

卷积

卷积核(滤波器,convolution kernel)

神经网络公式 

卷积运算方式及各部分介绍

补0(zero padding)

池化(Pooling)

激活函数RelU (Rectified Linear Units)

全连接层(Fully connected layers)

卷积层的计算细节

 标准卷积计算举例

1 x 1 卷积计算举例

 全连接层计算举例

常见的几种卷积神经网络介绍

A LeNet

B AlexNet

C VGGNet

D ResNet


卷积神经网络Convolutional Neural NetworkCNN

卷积

神经网络不再对每个像素信息做处理,而是对图片每一小块像素区域做处理,这种做法加强了信息的连续性。神经网络能够看到一个图形而不是一个点,同时加深神经网络对图片的理解。

具体:批量过滤器在图片上滚动收集图片上的信息,每一次收集的都是像素区域,再整理总结,再滚动收集……

Eg.图像拥有长宽高,其中高表示图片的颜色信息黑白高度1 彩色高度3

批量过滤器,每次长宽压缩,高度增加,对输入图片更深的理解

  • convolution卷积层:主要作用是保留图片的特征
  • pooling池化层:主要作用是把数据降维,可以有效的避免过拟合
  • Full connected 全连接层:根据不同任务输出我们想要的结果
  • classifier 分类预测

卷积核(滤波器,convolution kernel)

是可以用来提取特征的图像和卷积核卷积,就可以得到特征值,就是destination value特征提取。

卷积核放在神经网络里,就代表对应的权重(weight)

卷积核和图像点乘(dot product),就代表卷积核里的权重单独对相应位置的Pixel作用

这里强调点乘,虽说称为卷积,实际上是位置一一对应的点乘,不是真正意义的卷积:比如图像位置(1,1)乘以卷积核位置(1,1),仔细观察图右上角。

点乘完所有结果加起来=所有作用效果叠加起来。

神经网络公式 output=\sum_{i}^{}w_{i}x_{i}+b

卷积运算方式及各部分介绍

从左到右,每隔x列Pixel,向右移动一次卷积核进行卷积,当已经到最右,从上到下,每隔x行pixel,向下移动一次卷积核,移动完成,再继续如上所述,即先从左到右,再从上到下,直到所有pixels都被卷积核过一遍,则完成输入图片的第一层卷积层的特征提取。

这里的x叫作stride,就是步长,如果x = 2,就是相当每隔两行或者两列进行卷积。

补0(zero padding

分量的pixel外面围一圈0,称之为补0(zero padding),同样是stride x=1的情况下,补0比原来没有添0的情况下进行卷积,从左到右,从上到下都多赚了2次卷积,这样第一层卷积层输出的特征图(feature map)仍然为5x5,和输入图片的大小一致,而没有添0的第一层卷积层输出特征图大小为3x3。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MengYa_DreamZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值