- 博客(5)
- 收藏
- 关注
原创 LangChain实战项目:智能客服系统
智能客服系统摘要 本项目基于LangChain构建智能客服系统,具备多轮对话、知识库问答、情感分析等功能。系统采用模块化设计,包含核心组件如配置管理、数据模型、LLM服务和知识库服务。主要实现内容包括: 配置管理模块:集中处理API密钥、数据库连接等配置项 数据模型:定义客户信息和对话记录的数据结构 LLM服务:封装OpenAI接口,实现对话生成和记忆管理 知识库服务:集成向量数据库,支持知识检索和问答 系统架构清晰,各组件职责明确,便于扩展和维护,能为用户提供智能化的客户服务体验。
2025-07-18 15:24:50
817
原创 LangChain高级教程:构建企业级AI应用
本教程深入讲解LangChain高级应用开发,涵盖架构解析、组件开发、链式调用和智能代理等核心内容。重点介绍了如何构建自定义LLM包装器、高级提示模板和记忆组件,包括完整的代码实现。教程还涉及企业级部署、性能优化和监控等实战技巧,为开发者提供构建复杂AI应用的全套解决方案。文章通过实际代码示例展示了LangChain的高级功能集成方法,适合需要开发企业级AI应用的开发者参考。
2025-07-18 15:05:07
278
原创 LangChain入门指南:构建强大的AI应用
LangChain框架概述与应用 LangChain是一个模块化框架,用于构建基于语言模型的AI应用程序。其核心特性包括组件化设计、多工具集成和丰富的生态系统。框架提供LLM接口、提示模板、记忆组件、链式调用等基础模块,支持文档问答、聊天机器人和代码生成等实际应用场景。 开发流程包含三大关键概念: 组件:基础功能单元(LLM模型、模板等) 链:组合多个组件实现复杂逻辑 代理:智能调用工具的动态决策模块 典型应用示例: 文档问答系统通过文本分割、向量化存储实现语义检索 聊天机器人利用记忆组件维护对话上下文
2025-07-18 15:00:50
343
原创 Tiny Renderer:从零实现软件渲染管线 - 完整教程
Tiny Renderer 是一个从零实现的软件渲染器教学项目,通过逐步构建完整的渲染管线帮助理解图形学核心原理。项目从基础绘图算法开始,包括 Bresenham 直线绘制和三角形光栅化,使用重心坐标确定像素位置;然后实现 Z-buffer 算法解决隐藏面消除问题;最后引入透视投影模拟人眼视觉特性,通过投影矩阵将3D空间转换到2D屏幕。整个项目不依赖图形库,完全自主实现渲染管线,适合图形学学习者深入理解现代渲染技术。
2025-07-18 11:06:48
1592
原创 光线追踪算法详解:从原理到实现
本文深入讲解了光线追踪算法的原理与实现。光线追踪通过反向追踪技术(从相机发射光线而非光源)高效模拟真实光照效果。文章从透视投影、光线与颜色等基础理论入手,详细解析了算法设计思路,包括前向与后向追踪的区别、主渲染循环流程和核心函数实现。重点介绍了代码实现部分,涵盖向量类、光线类等基础数据结构,以及球体相交检测等关键算法。此外还探讨了光照阴影计算和优化技巧,为读者提供了一套完整的光线追踪实现方案。
2025-07-18 09:55:15
1664
Python必应图片爬虫工具
2025-07-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人