使用Matlab求解机器人五次多项式轨迹规划
模型构建
机器人每个关节是独立的,考虑某个关节在运动开始时刻ti的角度为 θ i \theta_i θi,希望该关节在时刻tf运动到新的角度 θ f \theta_f θf,使用五次多项式对轨迹进行规划:
θ ( t ) = c 0 + c 1 t + c 2 t 2 + c 3 t 3 + c 4 t 4 + c 5 t 5 θ ˙ ( t ) = c 1 + 2 c 2 t + 3 c 3 t 2 + 4 c 4 t 3 + 5 c 5 t 4 θ ¨ ( t ) = 2 c 2 + 6 c 3 t + 12 c 4 t 2 + 20 c 5 t 3 \theta(t) = c_0+c_1t+c_2 t^2+c_3 t^3+c_4 t^4+c_5 t^5\\ \dot{\theta}(t) = c_1+2c_2t+3c_3 t^2+4c_4 t^3+5c_5 t^4\\ \ddot{\theta}(t) = 2c_2+6c_3t+12c_4t^2+20c_5t^3\\ θ(t)=c0+c1t+c2t2+c3t3+c4t4+c5t5θ˙(t)=c1+2c2t+3c3t2+4c4t3+5c5t4θ¨(t)=2c2+6c3t+12c4t2+20c5t3
给定参数
一般而言,机器人从ti=0时刻运动到tf=T时刻,初始位移为orgAngle,初始速度为orgSpeed,初始加速度为orgAcc,终点位移为tarAngle,终点速度为tarSpeed,终点加速度为tarAcc。那么,则有如下等式:
θ ( 0 ) = c 0 = o r g A n g l e θ ˙ ( 0 ) = c 1 = o r g S p e e d θ ¨ ( 0 ) = 2 c 2 = o r g A c c θ ( T ) = c 0 + c 1 T + c 2 T 2 + c 3 T 3 + c 4 T 4 + c 5 T 5 θ ˙ ( T ) = c 1 + 2 c 2 T + 3 c 3 T 2 + 4 c 4 T 3 + 5 c 5 T 4 θ ¨ ( T ) = 2 c 2 + 6 c 3 T + 12 c 4 T 2 + 20 c 5 T 3 \theta(0) = c_0=orgAngle\\ \dot{\theta}(0) = c_1=orgSpeed\\ \ddot{\theta}(0) = 2c_2=orgAcc\\ \theta(T) = c_0+c_1T+c_2 T^2+c_3T^3+c_4T^4+c_5T^5\\ \dot{\theta}(T) = c_1+2c_2T+3c_3T^2+4c_4T^3+5c_5T^4\\ \ddot{\theta}(T) = 2c_2+6c_3T+12c_4T^2+20c_5T^3\\ θ(0)=c0=orgAngleθ˙(0)=