HDU - 2516 取石子游戏 (斐波那契博弈)

本文探讨了一种基于斐波那契数列的博弈策略,通过分析石子游戏的胜负条件,阐述了先手玩家在特定情况下必败的规律,并提供了一段使用C++实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://cn.vjudge.net/contest/269106#problem/F

题目大意:

        1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win".

解题思路:

        斐波那契博弈,n为斐波那契数时先手必败,用map记录一下斐波那契数即可。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
map<ll, ll>mp;
int main()
{
    ll i, n, a, b, c, len = 1e18;
    a = 1;
    b = 1;
    c = a + b;
    mp[1] = 1;
    while(c <= len)
    {
        mp[c] = 1;
        a = b;
        b = c;
        c = a + b;
    }
    while(scanf("%lld", &n) != EOF)
    {
        if(n == 0)break;
        if(mp[n] == 1)printf("Second win\n");
        else printf("First win\n");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值