人脸68关键点与K210疲劳检测

本文介绍了如何利用计算机视觉技术,通过检测人脸68关键点来判断闭眼、嘴巴状态,进而进行疲劳检测。文章详细解释了如何计算眼睛的闭合程度和嘴巴的闭合程度,并展示了如何在实时监控中应用这些方法,以及如何通过K210平台进行疲劳检测的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

人脸68关键点检测

检测闭眼睁眼

双眼关键点检测

计算眼睛的闭合程度:

原理:

设置阈值进行判断

实时监测和更新

拓展:通过判断上下眼皮重合程度去判断是否闭眼

检测嘴巴是否闭合

提取嘴唇上下轮廓的关键点

计算嘴唇上下轮廓关键点之间的距离

计算嘴角到上嘴唇中心的距离

计算嘴角到下嘴唇中心的距离

将两个距离相加作为嘴唇的闭合程度指标

判断嘴巴是否闭合

K210疲劳检测


前两天在做项目的时候,想通过偷懒的方式去试试,不用目标检测去检测疲劳,而是通过人脸检测的68关键点去通过检测睁眼闭眼和张嘴闭嘴去检测闭眼和打瞌睡。那让我们来试试吧。

人脸68关键点检测

人脸68关键点检测是一种计算机视觉技术,旨在识别和定位人脸图像中的关键点。这些关键点通常包括眼睛、鼻子、嘴巴等面部特征的位置。通过检测这些关键点,可以实现人脸识别、表情识别、姿势估计等

主要的步骤:

  1. 检测人脸:首先需要使用人脸检测算法确定图像中人脸的位置。
  2. 提取关键点:在检测到的人脸区域内,使用特定的算法来识别和标记关键点的位置。
  3. 分类关键点:将检测到的关键点分为不同的类别,如眼睛、鼻子、嘴巴等。

检测闭眼睁眼

双眼关键点检测

在68个关键点中,一般左眼和右眼的位置会分别由多个关键点表示。这些关键点的坐标通常以 (x, y) 形式给出,其中 x 表示水平方向的位置,y 表示垂直方向的位置。

import cv2
# 加载人脸关键点检测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
# 读取图像
img = cv2.imread('face_image.jpg')
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = detector(gray)
for face in faces:
    # 获取关键点
    landmarks = predictor(gray, face)
    for n in range(37, 48):  # 提取左眼和右眼的关键点
        x = landmarks.part(n).x
        y = landmarks.part(n).y
        cv2.circle(img, (x, y), 2, (0, 255, 0), -1)  # 在关键点处画圆

计算眼睛的闭合程度:

原理:

通过计算眼睛关键点的纵向位置(Y 坐标)的差值,并加权求和来反映眼睛的状态。

对于每只眼睛,首先计算关键点的纵向位置(Y 坐标)的差值。可以选择一些具有代表性的关键点来进行计算,比如眼睛的上下眼睑或者眼角等位置点。 对这些差值进行加权求和,可以根据不同的应用场景进行加权,比如可以将靠近眼睛中心的关键点的差值赋予更高的权重,因为这些部位更能反映眼睛的状态。

眼睛闭合程度计算公式

  • 首先,选择上眼睑和下眼睑的关键点,分别计算它们的平均纵向位置(Y 坐标)。
  • 然后,通过上眼睑平均位置减去下眼睑平均位置,得到一个值表示眼睛的闭合程度。这个值越小,表示眼睛越闭合\

[ \text{闭合程度} = \text{上眼睑平均位置} - \text{下眼睑平均位置} ]

其中,上眼睑平均位置和下眼睑平均位置分别表示对应关键点的纵向位置的平均值。

# 计算眼睛的闭合程度
def eye_closure_ratio(eye_landmarks):
    # 假设我们选取了上眼睑关键点的索引为[1, 2, 3],下眼睑关键点的索引为[4, 5, 6]
    upper_lid_points = eye_landmarks[1:4]
    lower_lid_points = eye_landmarks[4:7]
    # 计算上下眼睑的平均纵向位置
    upper_lid_y_mean = sum([point[1] for point in upper_lid_points]) / len(upper_lid_points)
    lower_lid_y_mean = sum([point[1] for point in lower_lid_points]) / len(lower_lid_points)
    # 计算纵向位置的差值,这里可以根据具体情况加权求和
    diff = upper_lid_y_mean - lower_lid_y_mean
    return diff

设置阈值进行判断

根据实际情况,可以设置一个阈值来判断眼睛是否闭合。当加权求和的结果小于阈值时,可以认为眼睛是闭合的;反之则是睁开的。

# 判断眼睛是否闭合
def is_eye_closed(eye_landmarks, threshold):
    closure_ratio = eye_closure_ratio(eye_landmarks)
    if closure_ratio < threshold:
        return True  # 眼睛闭合
    else:
        return False  # 眼睛睁开

实时监测和更新

在实时监测过程中,不断更新眼睛关键点的位置信息,并重新计算眼睛的闭合程度,以实现对眼睛状态的准确监测。

# 循环实时监测
while True:
    ret, frame = cap.read()  # 从摄像头读取画面
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = detector(gray)
    for face in faces:
        landmarks = predictor(gray, face)
        left_eye_landmarks = [(landmarks.part(n).x, landmarks.part(n).y) for n in range(36, 42)]  # 左眼关键点
        right_eye_landmarks = [(landmarks.part(n).x, landmarks.part(n).y) for n in range(42, 48)]  # 右眼关键点
        # 计算左眼闭合程度并判断
        left_eye_closed = is_eye_closed(left_eye_landmarks, 5)  # 假设阈值设为5
        # 计算右眼闭合程度并判断
        right_eye_closed = is_eye_closed(right_eye_landmarks, 5)  # 假设阈值设为5
        # 综合判断眼睛状态
        if left_eye_closed and right_eye_closed:
            print("Both eyes closed")
        elif left_eye_closed:
            print("Left eye closed")
        elif right_eye_closed:
            print("Right eye closed")
        else:
            print("Eyes open")

拓展:通过判断上下眼皮重合程度去判断是否闭眼

通过判断上下眼皮的重合程度来间接判断眼睛是否闭合。当眼睛闭合时,上下眼皮会有一定程度的重合,而睁开时则不会存在明显的重合。

具体实现方法可以是计算上下眼睑之间的垂直距离,并将其与总眼睛高度的比值作为闭合程度的度量指标。当这个比值超过一定阈值时,可以判断为闭眼状态

# 计算上下眼皮重合程度
def eyelid_overlap_ratio(eye_landmarks):
    # 假设我们选取了上眼睑关键点的索引为[1, 2, 3],下眼睑关键点的索引为[4, 5, 6]
    upper_lid_points = eye_landmarks[1:4]
    lower_lid_points = eye_landmarks[4:7]
    # 计算上下眼睑之间的垂直距离
    vertical_distance = lower_lid_points[0][1] - upper_lid_points[-1][1]
    # 计算垂直距离与总眼睛高度的比值
    eye_height = max(eye_landmarks, key=lambda x: x[1])[1] - min(eye_landmarks, key=lambda x: x[1])[1]
    overlap_ratio = vertical_distance / eye_height
    return overlap_ratio

检测嘴巴是否闭合

提取嘴唇上下轮廓的关键点

根据人脸关键点的位置信息,提取出嘴唇上下轮廓的关键点。一般而言,嘴唇上下轮廓的关键点包括嘴角、上嘴唇中心、下嘴唇中心等关键点。

计算嘴唇上下轮廓关键点之间的距离

选择合适的距离度量方法(如欧氏距离)计算嘴唇上下轮廓关键点之间的距离。具体来说,可以计算嘴角到上嘴唇中心和嘴角到下嘴唇中心的距离,并将这两个距离相加作为嘴唇的闭合程度指标。

计算嘴角到上嘴唇中心的距离

使用欧氏距离公式计算嘴角到上嘴唇中心的距离: [ distance_top = \sqrt{(x_{top} - x_{corner})^2 + (y_{top} - y_{corner})^2} ] 其中 (x_{top}) 和 (y_{top}) 分别是上嘴唇中心的 x、y 坐标,(x_{corner}) 和 (y_{corner}) 分别是嘴角的 x、y 坐标。

计算嘴角到下嘴唇中心的距离

同样使用欧氏距离公式计算嘴角到下嘴唇中心的距离: [ distance_bottom = \sqrt{(x_{bottom} - x_{corner})^2 + (y_{bottom} - y_{corner})^2} ] 其中 (x_{bottom}) 和 (y_{bottom}) 分别是下嘴唇中心的 x、y 坐标。

将两个距离相加作为嘴唇的闭合程度指标

将嘴角到上嘴唇中心的距离 (distance_top) 和嘴角到下嘴唇中心的距离 (distance_bottom) 相加,得到嘴唇的闭合程度指标: [ distance_total = distance_top + distance_bottom ]

判断嘴巴是否闭合

设定一个阈值,根据嘴唇上下轮廓关键点之间的距禀与该阈值的比较结果来判断嘴巴是否闭合。通常情况下,当嘴唇闭合时,嘴唇上下轮廓的关键点之间的距离会比较小;而当嘴巴张开时,这个距离会增大。

import math
# 计算欧氏距离
def euclidean_distance(point1, point2):
    return math.sqrt((point2[0] - point1[0])**2 + (point2[1] - point1[1])**2)
# 提取嘴唇上下轮廓的关键点索引(假设为索引0到11)
mouth_landmarks = face_landmarks[0:12]  # 假设face_landmarks包含了所有68个关键点的坐标
# 计算嘴唇上下轮廓关键点之间的距离
lip_distances = []
for i in range(len(mouth_landmarks)//2):
    distance = euclidean_distance(mouth_landmarks[i], mouth_landmarks[i + len(mouth_landmarks)//2])
    lip_distances.append(distance)
# 计算平均距离
avg_distance = sum(lip_distances) / len(lip_distances)
# 设定阈值
threshold = 5.0
# 判断嘴巴是否闭合
if avg_distance < threshold:
    print("嘴巴闭合")
else:
    print("嘴巴张开")

K210疲劳检测

项目的来源:对K210人脸检测68关键点的一种拓展

如何通过人脸检测68关键点去检测疲劳情况

 代码是根据K210的例程改的,也只是使用上下眼皮的距离和上下嘴唇的距离来检测疲劳状态

import sensor, image, time, lcd
from maix import KPU
import gc

lcd.init()
sensor.reset()

sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_vflip(True) # 摄像头后置

sensor.skip_frames(time=500)
clock = time.clock()

od_img = image.Image(size=(320, 256), copy_to_fb=False)

# 构建KPU对象
# 需要导入2个模型,分别是人脸检测模型和68关键点检测模型
anchor = (0.893, 1.463, 0.245, 0.389, 1.55, 2.58, 0.375, 0.594, 3.099, 5.038, 0.057, 0.090, 0.567, 0.904, 0.101, 0.160, 0.159, 0.255)
kpu_face_detect = KPU()
print("Loading face detection model")
kpu_face_detect.load_kmodel("/sd/face_detect.kmodel")
kpu_face_detect.init_yolo2(anchor, anchor_num=9, img_w=320, img_h=240, net_w=320, net_h=256, layer_w=10, layer_h=8, threshold=0.7, nms_value=0.2, classes=1)

kpu_lm68 = KPU()
print("Loading landmark 68 model")
kpu_lm68.load_kmodel("/sd/landmark68.kmodel")

RATIO = 0.08

while True:
    gc.collect()
    clock.tick()  # Update the FPS clock.
    img = sensor.snapshot()
    od_img.draw_image(img, 0, 0)
    od_img.pix_to_ai()
    kpu_face_detect.run_with_output(od_img)
    detections = kpu_face_detect.regionlayer_yolo2()
    fps = clock.fps()

    if len(detections) > 0:
        for det in detections:
            x1_t = max(int(det[0] - RATIO * det[2]), 0)
            x2_t = min(int(det[0] + det[2] + RATIO * det[2]), 319)
            y1_t = max(int(det[1] - RATIO * det[3]), 0)
            y2_t = min(int(det[1] + det[3] + RATIO * det[3]), 255)
            cut_img_w = x2_t - x1_t + 1
            cut_img_h = y2_t - y1_t + 1

            face_cut = img.cut(x1_t, y1_t, cut_img_w, cut_img_h)
            face_cut_128 = face_cut.resize(128, 128)
            face_cut_128.pix_to_ai()

            out = kpu_lm68.run_with_output(face_cut_128, getlist=True)
            if out is not None:
                left_eye_height = out[41][1] - out[37][1]
                right_eye_height = out[47][1] - out[43][1]
                eye_height_avg = (left_eye_height + right_eye_height) / 2
                mouth_height = out[66][1] - out[62][1]

                if eye_height_avg < 10 and mouth_height > 15:
                    print("Tired: Eyes closed, Mouth open")
                elif eye_height_avg < 10:
                    print("Tired: Eyes closed")
                elif mouth_height > 15:
                    print("Tired: Mouth open")

            del face_cut_128
            del face_cut

    img.draw_string(0, 0, "%2.1f fps" % fps, color=(0, 60, 255), scale=2.0)
    lcd.display(img)
    gc.collect()

kpu_face_detect.deinit()
kpu_lm68.deinit()

<think>好的,用户想实现基于K210芯片、红外摄像头和红外LED的人眼追踪方案。首先,我需要了解这些组件的基本功能和如何协同工作。K210是一款低功耗的AI芯片,适合边缘计算,常用于图像识别和机器学习任务。红外摄像头和红外LED的组合通常用于暗光环境,因为红外光对人眼不可见,但摄像头可以捕捉到,这样可以在不干扰用户的情况下进行追踪。 接下来,我需要考虑硬件连接部分。K210需要红外摄像头和LED连接,可能通过GPIO或I2C接口。红外摄像头可能需要特定的驱动程序或库支持,确保K210能够获取图像数据。红外LED可能需要通过PWM调节亮度,以适应不同环境的光线条件。 然后是算法部分。人眼追踪通常涉及图像处理步骤,比如人脸检测、眼睛定位和追踪。可能需要使用预训练的机器学习模型,如Haar级联或CNN模型,来识别人脸和眼睛。由于K210支持TensorFlow Lite等框架,可以部署轻量级模型进行实时处理。 用户提供的引用中提到,K210可以通过神经网络系统进行数据学习和训练,特别是分离疲劳状态和正常状态的RGB阈值[^1]。这可能涉及到在红外图像中提取特定特征,比如瞳孔的反射或眼睑的运动。此外,滤光片的应用也很重要,引用[2]提到使用650nm滤光片过滤红外光,避免画面泛白。但在这个方案中,可能需要保留红外光,所以滤光片的配置可能需要调整,或者选择适合的红外波长。 接下来是软件实现。需要编写代码来初始化摄像头和LED,捕获图像,运行推理模型,并输出追踪结果。可能还需要校准步骤,确保在不同距离和角度下都能准确追踪。 潜在的问题可能包括环境光的干扰、红外LED的均匀照射、模型的实时性能等。需要优化模型大小,确保在K210上运行流畅。同时,红外摄像头的帧率和分辨率也会影响追踪的准确性。 最后,测试和验证方案。需要在实际环境中测试,调整参数,比如LED亮度、摄像头曝光时间,以及模型的阈值设置,确保在各种条件下都能可靠工作。</think>### 基于K210芯片的红外人眼追踪实现方案 #### 一、硬件配置 1. **K210开发板**:搭载RISC-V双核处理器,支持卷积神经网络加速(KPU),适合部署轻量级人眼检测模型。 2. **红外摄像头**:选择850nm或940nm波长的红外摄像头,搭配可透红外光的镜头(移除红外截止滤光片)[^2] 3. **红外LED阵列**:使用940nm波长LED,通过PWM控制亮度,避免可见红光干扰 4. **滤光片配置**:若需要屏蔽可见光干扰,可加装850nm带通滤光片 #### 二、核心算法流程 ```python # 硬件初始化 sensor.reset() # 初始化摄像头 led_r = PWM(TIMER.PWM, freq=1000) # 红外LED控制 # 加载预训练模型 task = kpu.load(0x300000) # 人脸关键点检测模型 anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437, 6.92275, 6.718375, 9.01025) # 锚框参数 while True: img = sensor.snapshot() # 捕获红外图像 # 人脸检测关键点定位 faces = kpu.forward(task, img, anchor=anchor) for face in faces: # 提取眼部坐标(示例值) left_eye = (face.x()+50, face.y()+30) right_eye = (face.x()+130, face.y()+30) # 绘制追踪框 img.draw_rectangle(face.rect()) img.draw_cross(left_eye[0], left_eye[1]) img.draw_cross(right_eye[0], right_eye[1]) ``` #### 三、关键技术实现 1. **红外成像优化**: - 使用$I_{led} = P_{max} \cdot \frac{D}{d^2}$控制LED强度,其中$D$为PWM占空比,$d$为检测距离 - 通过$$HIST_{equalization}(I_{ir}) = \sum_{k=0}^{I(x,y)} p(k)$$增强图像对比度 2. **人眼定位算法**: - 采用轻量级MobileNetV2网络(<500KB)实现实时检测 - 使用瞳孔中心定位公式: $$(x_c,y_c) = \arg\min_{(x,y)} \sum_{i,j} |I(x+i,y+j) - I_{pupil\_template}|$$ 3. **动态阈值调节**: ```python def auto_threshold(img): hist = img.get_histogram() low = hist.get_threshold(value=0.15).value() high = hist.get_threshold(value=0.85).value() img.binary([(low, high)]) return img ``` #### 四、系统集成 1. **硬件连接拓扑**: ``` K210 Core → I2C0 → 红外摄像头 ↓ PWM0 → 红外LED驱动电路 ↓ UART1 → 上位机通信 ``` 2. **实时性能优化**: - 限制检测区域ROI为图像上半部分(640×240像素) - 采用差分检测算法:$$ \Delta E_t = \|E_t - E_{t-1}\|_2 > \theta $$ #### 五、注意事项 1. 红外LED布局应满足$$ \frac{L}{W} \geq 2 $$(L为灯板长度,W为摄像头视场角宽度) 2. 避免环境光干扰,建议工作照度<0.1lux 3. 模型训练需包含不同人种、戴眼镜等场景数据
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值