1053: [HAOI2007]反素数ant

本文介绍了一种通过深度搜索寻找最大反质数的方法。反质数定义为一个正整数x,其约数个数大于所有小于x的正整数的约数个数。文章详细解释了如何利用质因子来优化搜索过程,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

xg(x)xg(x)>g(i)  0<i<xx,n

题解:x是反质数->x的因子多->x的质因子多,由一个数的因子个数计算式,取小质因子更优,然后大力搜,可以玄学剪枝一下

我的收获:质因子神啊,复杂度强啊

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

#define INF 0x7fffffff
#define ll long long 

int n,ans=1,num=1;
int p[]={1,2,3,5,7,11,13,17,19,23,29,31};

void dfs(int x,ll now,int cnt,int last)
{
    if(x==12) return;
    if(cnt>num||(cnt==num&&now<ans)) ans=now,num=cnt;//选因数多的…… 
    for(int t=1,i=0;i<=last&&now*t<=n;i++,t*=p[x])
        dfs(x+1,now*t,cnt*(i+1),i);
}

void init()
{
    scanf("%d",&n);
    dfs(1,1,1,20);
    printf("%d\n",ans);
}

int main()
{
    init();
    return 0;
}
### P1463 POI2001 HAOI2007 素数 C语言实现 #### 定义与性质 对于给定的数据范围 \( 1 \leq N \leq 2 \times 10^9 \),素数是指某个正整数 \( x \) 满足条件:对于所有的 \( 0 < i < x \),都有 \( g(x) > g(i) \)[^2]。这里 \( g(n) \) 表示 \( n \) 的约数个数。 #### 解决方案概述 为了高效求解此问题,可以采用预处理加深度优先搜索 (DFS) 或广度优先搜索 (BFS) 来枚举可能的结果,并通过剪枝优化来减少不必要的计算量[^1]。 #### 关键算法思路 核心在于利用质因数分解特性以及贪心策略,在遍历过程中尽可能早地排除不可能成为最优解的情况: - 使用 DFS 枚举所有小于等于最大允许因子数量的组合; - 对于每一个新的乘积项,检查其是否超出界限并更新当前最佳答案; - 剪枝原则包括但不限于:当已知更优解存在时不继续深入探索;控制各位置上的指数上限以防止重复计数等。 #### C语言代码实现 以下是基于上述原理的一个简化版C语言程序框架: ```c #include <stdio.h> #define MAX_PRIME 10 // 考虑前几个最小的质数即可覆盖大部分情况 int primes[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; // 预定义的小质数表 long long best_ans; void dfs(int pos, int limit, long long product, int divisor_count){ if(pos >= MAX_PRIME || product * primes[pos] > best_ans){return;} for(int exp=1;exp<=limit && product*primes[pos]<=best_ans;exp++){ product *= primes[pos]; if(product>best_ans&&divisor_count*(exp+1)>max_divisors){ max_divisors=divisor_count*(exp+1); best_ans=product; } dfs(pos+1, exp, product, divisor_count*(exp+1)); } } // 主函数部分省略... ``` 该片段展示了如何构建一个递归过程来进行有效搜索,并适时调整全局变量 `best_ans` 和 `max_divisors` 记录目前发现的最佳候选者及其对应的除数数目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值