1009: [HNOI2008]GT考试

本文介绍了一种计算不包含特定子串的字符串方案数的方法,通过使用KMP算法预处理转移矩阵,并借助矩阵快速幂求解最终结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题目大意:求不包含m位给定串T的n位串S的方案数

题解:看这里
QAQ

我的收获:殊途同归?

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

#define rep(i,n) for(int i=0;i<n;i++)

const int N=25;

int n,m,P;
int nex[N];
char T[N];

struct Matrix{
    int x,y,v[N][N];
    int *operator [] (int x){return v[x];}
    Matrix(int _x,int _y,int w=0){
        x=_x,y=_y;
        rep(i,N) rep(j,N) v[i][j]=(i==j)?w:0;
    }
};

Matrix f(N,N);

Matrix operator * (Matrix a,Matrix b){
    Matrix c(a.x,b.y);
    rep(i,a.x) rep(j,b.y) rep(k,a.y) c[i][j]=(c[i][j]+a[i][k]*b[k][j])%P;
    return c;
}

Matrix operator ^ (Matrix a,int b){
    Matrix c(a.x,a.y,1);
    for(;b;b>>=1,a=a*a)
    if(b&1) c=c*a;
    return c;
}

void KMP()
{
    f.x=m,f.y=m;
    for(int i=2,j=0;i<=m;i++){
        while(j&&T[i]!=T[j+1]) j=nex[j];
        if(T[i]==T[j+1]) j++;
        nex[i]=j;
    }
    rep(i,m) rep(j,10){
        int x=i;
        while(x&&T[x+1]-'0'!=j) x=nex[x];
        if(T[x+1]-'0'==j) x++;
        if(x!=m) f[i][x]++;
    }
}

void work()
{
    KMP();
    Matrix a(1,m);a[0][0]=1;
    f=f^n;
    a=a*f;
    int sum=0; 
    for(int i=0;i<m;i++) sum=(sum+a[0][i])%P;
    printf("%d",sum);
}

void init()
{
    scanf("%d%d%d%s",&n,&m,&P,T+1);
}

int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值