华为昇腾部署 DeepSeek-R1 (671B) 大模型实战指南

概述

本指南详细讲解如何在华为昇腾Atlas 800I A2服务器集群上部署DeepSeek-R1 671B大模型,涵盖从环境准备到服务化部署的全流程。通过本教程,您将掌握:

  • 模型权重转换与量化方法
  • 昇腾专用镜像的使用技巧
  • 多机分布式推理配置
  • 生产级服务化部署方案

一、部署前准备

1.1 硬件要求

部署类型 服务器配置 显存要求
BF16推理 4台Atlas 800I A2 8*64GB
W8A8量化推理 2台Atlas 800I A2 8*64GB

1.2 软件环境

# 关键组件版本
MindIE 2.0.T3
CANN 8.0.T63
PTA 6.0.T700
HDK 24.1.0
组件 版本
MindIE 2.0.T3
CANN 8.0.T63
PTA 6.0.T700
MindStudio Msit: br_noncom_MindStudio_8.0.0_POC_20251231分支
HDK 24.1.0

二、模型权重处理

2.1 权重下载

# 官方权重库
wget https://huggingface.co/deepseek-ai/DeepSeek-R1
wget https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero

国内可以通过魔搭社区快速下载

modelscope 魔搭社区模型下载指南

2.2 格式转换

GPU侧转换:

git clone https://github.com/deepseek-ai/DeepSeek-V3.git
cd DeepSeek-V3/inference/
python fp8_cast_bf16.py \
  --input-fp8-hf-path ./DeepSeek-R1 \
  --output-bf16-hf-path ./deepseek-R1-bf16

NPU侧转换:

git clone https://gitee.com/ascend/ModelZoo-PyTorch.git
cd ModelZoo-PyTorch/MindIE/LLM/DeepSeek/DeepSeek-V2/NPU_inference
python fp8_cast_bf16.py \
  --input-fp8-hf-path ./DeepSeek-R1 \
  --output-bf16-hf-path ./deepseek-R1-bf16

💡 转换后权重约1.3TB,确保存储空间充足


三、昇腾镜像配置

3.1 镜像获取

  1. 访问昇腾镜像仓库
  2. 下载:mindie_2.0.T3-800I-A2-py311-openeuler24.03-lts-aarch64.tar.gz​
  3. 加载镜像:
docker load -i mindie:2.0.T3-800I-A2-py311-openeuler24.03-lts-aarch64

3.2 容器启动

1. 准备模型

目前提供的MindIE镜像预置了DeepSeek-R1模型推理脚本,无需再下载模型代码,也无需参考目录结构。(可跳过至获取模型权重)

  • 下载对应模型代码,可以使用:
git clone https://gitee.com/ascend/ModelZoo-PyTorch.git

目录结构应为如下:

├── DeepSeek-R1
│   ├── README.md
  • 获取模型权重

    • 本地已有模型权重 从您信任的来源自行获取权重后,放置在从上述下载的模型代码的主目录下,放置后的目录结构应为如下:

      ├── DeepSeek-R1
      │   ├── README.md
      │   └── 权重文件1
      │   .   
      │   .
      │   └── 权重文件n
      
    • 本地没有模型权重 我们提供模型权重下载脚本,支持HuggingFace,ModelScope以及Modelers来源的模型下载,用法如下
      注意:以下引用的atb_models​路径在DeepSeek-V2​路径下

      1. 确认atb_models/build/weights_url.yaml​文件中对应repo_id,当前已默认配置模型官方认可的下载地址,如您有其他信任来源的repo_id,可自行修改,默认配置如下:
      HuggingFace: deepseek-ai/DeepSeek-R1
      ModelScope: deepseek-ai/DeepSeek-R1
      Modelers: None
      <
要在Linux上配置GitHub的SSH密钥,您可以按照以下步骤进行操作: 1. 首先,建议您设置一个密码以增加安全性。您可以使用以下命令复制公钥文件的内容:`cat ~/.ssh/id_rsa.pub`。\[1\] 2. 在GitHub上,打开"Settings",然后选择"SSH and GPG keys",点击"New SSH key"。 3. 在"Key"文本框中粘贴之前复制的公钥内容,并设置一个标题,然后点击"Add SSH key"。\[1\] 4. 您可以通过运行以下命令来检查SSH连接是否成功:`ssh -T [email protected]`。如果您看到类似于"Hi XXXXXX! You've successfully authenticated, but GitHub does not provide shell access."的消息,说明连接成功。\[2\] 如果您在配置过程中没有打印出name和email,这意味着您还没有进行相应的配置。您可以使用以下命令进行配置: - 配置用户名:`git config --global user.name "<userName>"` - 配置邮箱:`git config --global user.email "<email>"`\[3\] 另外,如果您还没有生成SSH密钥,您可以使用以下命令生成:`ssh-keygen -t rsa -C "<email>"`。\[3\] 这样,您就可以在Linux上成功配置GitHub的SSH密钥了。 #### 引用[.reference_title] - *1* [Github使用ssh密钥登陆](https://blog.csdn.net/weixin_39591031/article/details/121368476)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [解决github配置ssh密钥后仍然需要登录](https://blog.csdn.net/weixin_44639164/article/details/122389112)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Github 配置ssh密钥](https://blog.csdn.net/qq_25473795/article/details/128245065)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

歌刎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值