概述
本指南详细讲解如何在华为昇腾Atlas 800I A2服务器集群上部署DeepSeek-R1 671B大模型,涵盖从环境准备到服务化部署的全流程。通过本教程,您将掌握:
- 模型权重转换与量化方法
- 昇腾专用镜像的使用技巧
- 多机分布式推理配置
- 生产级服务化部署方案
一、部署前准备
1.1 硬件要求
部署类型 | 服务器配置 | 显存要求 |
---|---|---|
BF16推理 | 4台Atlas 800I A2 | 8*64GB |
W8A8量化推理 | 2台Atlas 800I A2 | 8*64GB |
1.2 软件环境
# 关键组件版本
MindIE 2.0.T3
CANN 8.0.T63
PTA 6.0.T700
HDK 24.1.0
组件 | 版本 |
---|---|
MindIE | 2.0.T3 |
CANN | 8.0.T63 |
PTA | 6.0.T700 |
MindStudio | Msit: br_noncom_MindStudio_8.0.0_POC_20251231分支 |
HDK | 24.1.0 |
二、模型权重处理
2.1 权重下载
# 官方权重库
wget https://huggingface.co/deepseek-ai/DeepSeek-R1
wget https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero
国内可以通过魔搭社区快速下载
2.2 格式转换
GPU侧转换:
git clone https://github.com/deepseek-ai/DeepSeek-V3.git
cd DeepSeek-V3/inference/
python fp8_cast_bf16.py \
--input-fp8-hf-path ./DeepSeek-R1 \
--output-bf16-hf-path ./deepseek-R1-bf16
NPU侧转换:
git clone https://gitee.com/ascend/ModelZoo-PyTorch.git
cd ModelZoo-PyTorch/MindIE/LLM/DeepSeek/DeepSeek-V2/NPU_inference
python fp8_cast_bf16.py \
--input-fp8-hf-path ./DeepSeek-R1 \
--output-bf16-hf-path ./deepseek-R1-bf16
💡 转换后权重约1.3TB,确保存储空间充足
三、昇腾镜像配置
3.1 镜像获取
- 访问昇腾镜像仓库
- 下载:mindie_2.0.T3-800I-A2-py311-openeuler24.03-lts-aarch64.tar.gz
- 加载镜像:
docker load -i mindie:2.0.T3-800I-A2-py311-openeuler24.03-lts-aarch64
3.2 容器启动
1. 准备模型
目前提供的MindIE镜像预置了DeepSeek-R1模型推理脚本,无需再下载模型代码,也无需参考目录结构。(可跳过至获取模型权重)
- 下载对应模型代码,可以使用:
git clone https://gitee.com/ascend/ModelZoo-PyTorch.git
目录结构应为如下:
├── DeepSeek-R1
│ ├── README.md
-
获取模型权重
-
本地已有模型权重 从您信任的来源自行获取权重后,放置在从上述下载的模型代码的主目录下,放置后的目录结构应为如下:
├── DeepSeek-R1 │ ├── README.md │ └── 权重文件1 │ . │ . │ └── 权重文件n
-
本地没有模型权重 我们提供模型权重下载脚本,支持HuggingFace,ModelScope以及Modelers来源的模型下载,用法如下
注意:以下引用的atb_models路径在DeepSeek-V2路径下- 确认atb_models/build/weights_url.yaml文件中对应repo_id,当前已默认配置模型官方认可的下载地址,如您有其他信任来源的repo_id,可自行修改,默认配置如下:
HuggingFace: deepseek-ai/DeepSeek-R1 ModelScope: deepseek-ai/DeepSeek-R1 Modelers: None <
-