Task01:机器学习综述

机器学习概述:

机器学习是一门多领域交叉学科,涉及概率论,统计学,逼近论,凸分析,算法复杂度理论等多门学科。专门研究计算机怎么样模拟或者实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构使之不断完善自身的性能。他是人工智能的核心,是使计算机具有智能的根本途径。

一、机器学习的发展

时间段 机器学习理论 代表性成果
二十世纪五十年代初 人工智能研究处于推理期 A. Newell和H. Simon的“逻辑理论家”(Logic Theorist)程序证明了数学原理,以及此后的“通用问题求解”(General Problem Solving)程序。
已出现机器学习的相关研究 1952年,阿瑟·萨缪尔(Arthur Samuel)在IBM公司研制了一个西洋跳棋程序,这是人工智能下棋问题的由来。
二十世纪五十年代中后期 开始出现基于神经网络的“连接主义”(Connectionism)学习 F. Rosenblatt提出了感知机(Perceptron),但该感知机只能处理线性分类问题,处理不了“异或”逻辑。还有B. Widrow提出的Adaline。
二十世纪六七十年代 基于逻辑表示的“符号主义”(Symbolism)学习技术蓬勃发展 P. Winston的结构学习系统,R. S. Michalski的基于逻辑的归纳学习系统,以及E. B. Hunt的概念学习系统。
以决策理论为基础的学习技术  
强化学习技术 N. J. Nilson的“学习机器”。
统计学习理论的一些奠基性成果 支持向量,VC维,结构风险最小化原则。
二十世纪八十年代至九十年代中期 机械学习(死记硬背式学习)
示教学习(从指令中学习)
类比学习(通过观察和发现学习)
归纳学习(从样例中学习)
学习方式分类
从样例中学习的主流技术之一:(1)符号主义学习
(2)基于逻辑的学习
(1)决策树(decision tree)。
(2)归纳逻辑程序设计(Inductive Logic Programming, ILP)具有很强的知识表示能力,可以较容易地表达出复杂的数据关系,但会导致学习过程面临的假设空间太大,复杂度极高,因此,问题规模稍大就难以有效地进行学习。
从样例中学习的主流技术之二:基于神经网络的连接主义学习 1983年,J. J. Hopfield利用神经网络求解“流动推销员问题”这个NP难题。1986年,D. E. Rumelhart等人重新发明了BP算法,BP算法一直是被应用得最广泛的机器学习算法之一。
二十世纪八十年代是机器学习成为一个独立的学科领域,各种机器学习技术百花初绽的时期 连接主义学习的最大局限是“试错性”,学习过程涉及大量参数,而参数的设置缺乏理论指导,主要靠手工“调参”,参数调节失之毫厘,学习结果可能谬以千里。
二十世纪九十年代中期 统计学习(Statistical Learning) 支持向量机(Support Vector Machine,SVM),核方法(Kernel Methods)。
二十一世纪初至今 深度学习(Deep Learning) 深度学习兴起的原因有二:数据量大,机器计算能力强。

 

二、机器学习的分类

1、监督学习

      监督学习需要学习一组输入变量(通常为向量)和输出变量(也称为监控信号)之间的映射,并应用此映射来预测未知数据的输出。监督学习的方法尝试发现输入变量和目标变量之间的关系。发现的关系在称为“模型”的结构中表示。

      在监督学习的过程中会提供对错指示,通过不断地重复训练,使其找到给定的训练数据集中的某种模式或规律,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求包括输入和输出,主要应用于分类和预测。

2、无监督学习

      无监督学习针对全体输入样本,学习一种特定的模型来表征输入样本整体的统计结构。

      与监督学习不同,在无监督学习中,无须对数据集进行标记,即没有输出。其需要从数据集中发现隐含的某种结构,从而获得样本数据的结构特征,判断哪些数据比较相似。因此,无监督学习目标不是告诉计算机怎么做,而是让它去学习怎样做事情。

3、半监督学习

      半监督学习是监督学习和无监督学习的结合,其在训练阶段使用的是未标记的数据和已标记的数据,不仅要学习属性之间的结构关系,也要输出分类模型进行预测。

4、强化学习

      强化学习是训练一个会自我行动的“代理人”来最大化它从世界中获取奖励的问题。

      强化学习又称为再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体在与环境的交互过程中通过学习策略以达到回报最大化或实现特定目标的问题。

三、机器学习模型

机器学习 = 数据(data) + 模型(model) +  优化方法(optimal strategy)

常见的机器学习算法:

  1. 线性算法 Linear Algorithms

    1. Linear Regression

    2. Lasso Regression

    3. Ridge Regression

    4. Logistic Regression

  2. 决策树 Decision Tree

    1. ID3

    2. C4.5

    3. CART

  3. 支持向量机 SVM

  4. 朴素贝叶斯 Naive Bayes Algorithms

    1. Naive Bayes

    2. Gaussian Naive Bayes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值