第1章 微扰坡模型
1.3 微扰坡
作定点AAA和定直线lll,在lll上作动点PPP,连接APAPAP.
lll体现了PPP具有的约束,将此时的APAPAP称为AAA关于lll的坡.
借助参数描述坡.
设AAA在lll的正投影为A′A'A′,AA′=hAA'=hAA′=h,A′P=xA'P=xA′P=x,AP=rAP=rAP=r,APAPAP与lll的夹角为θ\thetaθ,有
sinθ=hr\sin \theta = \frac{h}{r}sinθ=rh
cscθ=rh\csc \theta = \frac{r}{h}cscθ=hr
cosθ=xr\cos \theta = \frac{x}{r}cosθ=rx
secθ=rh\sec \theta = \frac{r}{h}secθ=hr
tanθ=hx\tan \theta = \frac{h}{x}tanθ=xh
cotθ=xh\cot \theta = \frac{x}{h}cotθ=hx
无论APAPAP的长度是多少,AA′AA'AA′的长度是多少,以上公式均成立.
这反映了相同形状的直角三角形之间的统一性.sinθ\sin\thetasinθ等称作θ\thetaθ的三角函数.
给P一个向右的微扰,不难发现
drdP=cosθ\frac{dr}{dP}=\cos\thetadPdr=cosθ
dPdr=secθ\frac{dP}{dr}=\sec\thetadrdP=secθ
dθdP=sinθr\frac{d\theta}{dP}=\frac{\sin\theta}{r}dPdθ=rsinθ
dPdθ=rsinθ\frac{dP}{d\theta}=\frac{r}{\sin\theta}dθdP=sinθr
dθdr=tanθr\frac{d\theta}{dr}=\frac{\tan\theta}{r}drdθ=rtanθ
drdθ=rtanθ\frac{dr}{d\theta}=\frac{r}{\tan\theta}dθdr=tanθr
可见,drdrdr,dθd\thetadθ,dxdxdx是rrr,θ\thetaθ,xxx对dPdPdP的不同形式的应答.
特别地,当AP⊥lAP\perp lAP⊥l时,θ=π2\theta=\frac{\pi}{2}θ=2π,sinθ=0\sin\theta=0sinθ=0,cosθ=1\cos\theta=1cosθ=1,tanθ=0\tan\theta=0tanθ=0,rrr取到最小值APAPAP,xxx取到最小值000.
从定点到定直线的连线中,垂线段最短.
现在积累对PPP的微扰dPdPdP,使图形簇覆盖每一个可能的情况.
若xxx的积累dxdxdx构成θ0\theta_0θ0和r0r_0r0,有
θ0=π2−∫0x0hx2+h2dx\theta_0=\frac{\pi}{2}-\int_0^{x_0} \frac{h}{x^2+h^2}dxθ0=2π−∫0x0x2+h2hdx
r0=h+∫0x0hx2+h2dxr_0=h+\int_0^{x_0}\frac{h}{\sqrt{x^2+h^2}}dxr0=h+∫0x0x2+h2hdx
若θ\thetaθ的积累(减少)dθd\thetadθ构成x0x_0x0和r0r_0r0,有
x0=−∫θ0π2hsin2θdθx_0=-\int_{\theta_0}^{\frac{\pi}{2}} \frac{h}{\sin^2\theta} d\thetax0=−∫θ02πsin2θhdθ
r0=h−∫θ0π2hsinθtanθdθr_0=h-\int_{\theta_0}^{\frac{\pi}{2}}\frac{h}{\sin\theta\tan\theta}d\thetar0=h−∫θ02πsinθtanθhdθ
若rrr的积累drdrdr构成x0x_0x0和θ0\theta_0θ0,有
x0=∫hr0rr2−h2drx_0=\int_h^{r_0}\frac{r}{\sqrt{r^2-h^2}} drx0=∫hr0r2−h2rdr
θ0=π2−∫hr0hrr2−h2dr\theta_0=\frac{\pi}{2}-\int_h^{r_0} \frac{h}{r\sqrt{r^2-h^2}}drθ0=2π−∫hr0rr2−h2hdr
这以另一种形式体现了xxx,θ\thetaθ,rrr对于dPdPdP的应答是统一的.