1.3 微扰坡

第1章 微扰坡模型

1.3 微扰坡

作定点AAA和定直线lll,在lll上作动点PPP,连接APAPAP.
图 1.9

lll体现了PPP具有的约束,将此时的APAPAP称为AAA关于lll的坡.
图 1.9

借助参数描述坡.
AAAlll的正投影为A′A'A,AA′=hAA'=hAA=h,A′P=xA'P=xAP=x,AP=rAP=rAP=r,APAPAPlll的夹角为θ\thetaθ,有
sin⁡θ=hr\sin \theta = \frac{h}{r}sinθ=rh
csc⁡θ=rh\csc \theta = \frac{r}{h}cscθ=hr
cos⁡θ=xr\cos \theta = \frac{x}{r}cosθ=rx
sec⁡θ=rh\sec \theta = \frac{r}{h}secθ=hr
tan⁡θ=hx\tan \theta = \frac{h}{x}tanθ=xh
cot⁡θ=xh\cot \theta = \frac{x}{h}cotθ=hx
无论APAPAP的长度是多少,AA′AA'AA的长度是多少,以上公式均成立.
这反映了相同形状的直角三角形之间的统一性.sin⁡θ\sin\thetasinθ等称作θ\thetaθ的三角函数.
给P一个向右的微扰,不难发现
drdP=cos⁡θ\frac{dr}{dP}=\cos\thetadPdr=cosθ
dPdr=sec⁡θ\frac{dP}{dr}=\sec\thetadrdP=secθ
dθdP=sin⁡θr\frac{d\theta}{dP}=\frac{\sin\theta}{r}dPdθ=rsinθ
dPdθ=rsin⁡θ\frac{dP}{d\theta}=\frac{r}{\sin\theta}dθdP=sinθr
dθdr=tan⁡θr\frac{d\theta}{dr}=\frac{\tan\theta}{r}drdθ=rtanθ
drdθ=rtan⁡θ\frac{dr}{d\theta}=\frac{r}{\tan\theta}dθdr=tanθr
图 1.10

可见,drdrdr,dθd\thetadθ,dxdxdxrrr,θ\thetaθ,xxxdPdPdP的不同形式的应答.
特别地,当AP⊥lAP\perp lAPl时,θ=π2\theta=\frac{\pi}{2}θ=2π,sin⁡θ=0\sin\theta=0sinθ=0,cos⁡θ=1\cos\theta=1cosθ=1,tan⁡θ=0\tan\theta=0tanθ=0,rrr取到最小值APAPAP,xxx取到最小值000.
从定点到定直线的连线中,垂线段最短.
图 1.11

现在积累对PPP的微扰dPdPdP,使图形簇覆盖每一个可能的情况.
图1.12

xxx的积累dxdxdx构成θ0\theta_0θ0r0r_0r0,有
θ0=π2−∫0x0hx2+h2dx\theta_0=\frac{\pi}{2}-\int_0^{x_0} \frac{h}{x^2+h^2}dxθ0=2π0x0x2+h2hdx
r0=h+∫0x0hx2+h2dxr_0=h+\int_0^{x_0}\frac{h}{\sqrt{x^2+h^2}}dxr0=h+0x0x2+h2hdx
θ\thetaθ的积累(减少)dθd\thetadθ构成x0x_0x0r0r_0r0,有
x0=−∫θ0π2hsin⁡2θdθx_0=-\int_{\theta_0}^{\frac{\pi}{2}} \frac{h}{\sin^2\theta} d\thetax0=θ02πsin2θhdθ
r0=h−∫θ0π2hsin⁡θtan⁡θdθr_0=h-\int_{\theta_0}^{\frac{\pi}{2}}\frac{h}{\sin\theta\tan\theta}d\thetar0=hθ02πsinθtanθhdθ
rrr的积累drdrdr构成x0x_0x0θ0\theta_0θ0,有
x0=∫hr0rr2−h2drx_0=\int_h^{r_0}\frac{r}{\sqrt{r^2-h^2}} drx0=hr0r2h2rdr
θ0=π2−∫hr0hrr2−h2dr\theta_0=\frac{\pi}{2}-\int_h^{r_0} \frac{h}{r\sqrt{r^2-h^2}}drθ0=2πhr0rr2h2hdr

这以另一种形式体现了xxx,θ\thetaθ,rrr对于dPdPdP的应答是统一的.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值