1.5 例题1

第一章 微扰坡模型

1.5 例题1

如图所示,在平面直角坐标系中,O(0,0)O(0,0)O(0,0),C(4,0)C(4,0)C(4,0),D(0,4)D(0,4)D(0,4),AB⊥xAB \perp xABx,l=kx−y=0l=kx-y=0l=kxy=0,B∈lB \in lBl,E∈lE \in lEl.
r1=OAr_1=OAr1=OA,r2=BCr_2=BCr2=BC,∠DAO=α\angle DAO = \alphaDAO=α,∠EBC=β\angle EBC = \betaEBC=β,∠EOC=γ\angle EOC = \gammaEOC=γ.
图 1.18

r1+r2r1+r2r1+r2取最小值时,α\alphaα,β\betaβ,γ\gammaγ满足一个漂亮(但用处不大)的等量关系.
cos⁡α=cos⁡β⋅cos⁡γ\cos\alpha = \cos\beta \cdot \cos\gammacosα=cosβcosγ
证明过程如下.
AAA一个微扰dAdAdA,由AB⊥xAB \perp xABx
dB=dA⋅sec⁡γdB=dA \cdot \sec \gammadB=dAsecγ
图 1.19

dAdAdAr1r_1r1作用,有
dr1=dA⋅cos⁡αdr_1 = dA \cdot \cos \alphadr1=dAcosα
图 1.20

同理,
dr2=dB⋅cos⁡βdr_2 = dB \cdot \cos \betadr2=dBcosβ
图 1.21


dr1dr2=cos⁡αcos⁡β⋅cos⁡γ\frac{dr_1}{dr_2}=\frac{\cos \alpha}{\cos \beta} \cdot \cos \gammadr2dr1=cosβcosαcosγ
当且仅当dr1=dr2dr_1 = dr_2dr1=dr2时,r1+r2r_1 + r_2r1+r2最小.

cos⁡α=cos⁡β⋅cos⁡γ\cos \alpha = \cos \beta \cdot \cos \gammacosα=cosβcosγ
如果非要把答案算出来,这个方法并不直接.因为构造出来的xAx_AxA是在四次方程中的,故可以说答案可解但意义不大.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值