第一章 微扰坡模型
1.5 例题1
如图所示,在平面直角坐标系中,O(0,0)O(0,0)O(0,0),C(4,0)C(4,0)C(4,0),D(0,4)D(0,4)D(0,4),AB⊥xAB \perp xAB⊥x,l=kx−y=0l=kx-y=0l=kx−y=0,B∈lB \in lB∈l,E∈lE \in lE∈l.
记r1=OAr_1=OAr1=OA,r2=BCr_2=BCr2=BC,∠DAO=α\angle DAO = \alpha∠DAO=α,∠EBC=β\angle EBC = \beta∠EBC=β,∠EOC=γ\angle EOC = \gamma∠EOC=γ.
当r1+r2r1+r2r1+r2取最小值时,α\alphaα,β\betaβ,γ\gammaγ满足一个漂亮(但用处不大)的等量关系.
cosα=cosβ⋅cosγ\cos\alpha = \cos\beta \cdot \cos\gammacosα=cosβ⋅cosγ
证明过程如下.
给AAA一个微扰dAdAdA,由AB⊥xAB \perp xAB⊥x得
dB=dA⋅secγdB=dA \cdot \sec \gammadB=dA⋅secγ
dAdAdA对r1r_1r1作用,有
dr1=dA⋅cosαdr_1 = dA \cdot \cos \alphadr1=dA⋅cosα
同理,
dr2=dB⋅cosβdr_2 = dB \cdot \cos \betadr2=dB⋅cosβ
故
dr1dr2=cosαcosβ⋅cosγ\frac{dr_1}{dr_2}=\frac{\cos \alpha}{\cos \beta} \cdot \cos \gammadr2dr1=cosβcosα⋅cosγ
当且仅当dr1=dr2dr_1 = dr_2dr1=dr2时,r1+r2r_1 + r_2r1+r2最小.
即
cosα=cosβ⋅cosγ\cos \alpha = \cos \beta \cdot \cos \gammacosα=cosβ⋅cosγ
如果非要把答案算出来,这个方法并不直接.因为构造出来的xAx_AxA是在四次方程中的,故可以说答案可解但意义不大.