C++ 稀疏矩阵快速转置

【问题描述】

稀疏矩阵的存储不宜用二维数组存储每个元素,那样的话会浪费很多的存储空间。所以可以使用一个一维数组存储其中的非零元素。这个一维数组的元素类型是一个三元组,由非零元素在该稀疏矩阵中的位置(行号和列号对)以及该元组的值构成。而矩阵转置就是将矩阵行和列上的元素对换。

请你实现一个快速的对稀疏矩阵进行转置的算法。

【输入形式】

输入的第一行是两个整数r和c(r<200, c<200, r*c <= 12500),分别表示一个包含很多0的稀疏矩阵的行数和列数。接下来有r行,每行有c个整数,用空格隔开,表示这个稀疏矩阵的各个元素。

【输出形式】

输出为读入的稀疏矩阵的转置矩阵。输出共有c行,每行有r个整数,每个整数后输出一个空格。请注意行尾输出换行。

【样例输入】

6 7
0 12 9 0 0 0 0
0 0 0 0 0 0 0
-3 0 0 0 0 14 0
0 0 24 0 0 0 0
0 18 0 0 0 0 0
15 0 0 -7 0 0 0

【样例输出】

0 0 -3 0 0 15
12 0 0 0 18 0
9 0 0 24 0 0
0 0 0 0 0 -7
0 0 0 0 0 0
0 0 14 0 0 0
0 0 0 0 0 0

列序递增转置算法代码实现

#include<iostream>
#define maxsize 10000
using namespace std;
struct triple
{
	int row,col;
	int e;
};
struct matrix
{
	triple data[maxsize+1];
	int r,c,len;
};
int main()
{
	//1.原矩阵的输入 
	matrix lsy;
	cin>>lsy.r>>lsy.c;
	int data,flag=1;
	for(int i=0;i<lsy.r;i++)
	{
		for(int j=0;j<lsy.c;j++)
		{
			cin>>data;
			if(data!=0)
			{
				lsy.data[flag].row=i+1;
				lsy.data[flag].col=j+1;
				lsy.data[flag].e=data;
				lsy.len=flag;
				flag++;
			}
		}
	}
	//2.开始转置 
	matrix lsy2;
	lsy2.r=lsy.c;
	lsy2.c=lsy.r;
	lsy2.len=lsy.len;
	if(lsy2.len>0)
	{
		int flag2=1;//辅助计数器,记录转置后的元素在三元组表B中的下标值 
		for(int i=1;i<=lsy.c;i++)//扫描原矩阵的三元组表共c次,每次寻找列值为i的三元组进行转置 
		{
			for(int j=1;j<=lsy.len;j++)//从头至尾扫描三元组表lsy,寻找col值为i都三元组进行转置 
			{
				if(lsy.data[j].col==i)
				{
					lsy2.data[flag2].row=lsy.data[j].col;
					lsy2.data[flag2].col=lsy.data[j].row;
					lsy2.data[flag2].e=lsy.data[j].e;
					flag2++;//计数器+1,指向本行下一个转置后元素的位置下标 
				}
			}
		}
	}
	//3.输出转置后的矩阵 
	int flag3=1;
	for(int i=0;i<lsy.c;i++)
	{
		for(int j=0;j<lsy.r;j++)
		{
			if(lsy2.data[flag3].row==i+1&&lsy2.data[flag3].col==j+1)
			{
				cout<<lsy2.data[flag3].e<<' ';
				flag3++;
			}
			else
			cout<<"0"<<' ';
		}
		cout<<endl;
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值