【问题描述】
稀疏矩阵的存储不宜用二维数组存储每个元素,那样的话会浪费很多的存储空间。所以可以使用一个一维数组存储其中的非零元素。这个一维数组的元素类型是一个三元组,由非零元素在该稀疏矩阵中的位置(行号和列号对)以及该元组的值构成。而矩阵转置就是将矩阵行和列上的元素对换。
请你实现一个快速的对稀疏矩阵进行转置的算法。
【输入形式】
输入的第一行是两个整数r和c(r<200, c<200, r*c <= 12500),分别表示一个包含很多0的稀疏矩阵的行数和列数。接下来有r行,每行有c个整数,用空格隔开,表示这个稀疏矩阵的各个元素。
【输出形式】
输出为读入的稀疏矩阵的转置矩阵。输出共有c行,每行有r个整数,每个整数后输出一个空格。请注意行尾输出换行。
【样例输入】
6 7
0 12 9 0 0 0 0
0 0 0 0 0 0 0
-3 0 0 0 0 14 0
0 0 24 0 0 0 0
0 18 0 0 0 0 0
15 0 0 -7 0 0 0
【样例输出】
0 0 -3 0 0 15
12 0 0 0 18 0
9 0 0 24 0 0
0 0 0 0 0 -7
0 0 0 0 0 0
0 0 14 0 0 0
0 0 0 0 0 0
列序递增转置算法代码实现
#include<iostream>
#define maxsize 10000
using namespace std;
struct triple
{
int row,col;
int e;
};
struct matrix
{
triple data[maxsize+1];
int r,c,len;
};
int main()
{
//1.原矩阵的输入
matrix lsy;
cin>>lsy.r>>lsy.c;
int data,flag=1;
for(int i=0;i<lsy.r;i++)
{
for(int j=0;j<lsy.c;j++)
{
cin>>data;
if(data!=0)
{
lsy.data[flag].row=i+1;
lsy.data[flag].col=j+1;
lsy.data[flag].e=data;
lsy.len=flag;
flag++;
}
}
}
//2.开始转置
matrix lsy2;
lsy2.r=lsy.c;
lsy2.c=lsy.r;
lsy2.len=lsy.len;
if(lsy2.len>0)
{
int flag2=1;//辅助计数器,记录转置后的元素在三元组表B中的下标值
for(int i=1;i<=lsy.c;i++)//扫描原矩阵的三元组表共c次,每次寻找列值为i的三元组进行转置
{
for(int j=1;j<=lsy.len;j++)//从头至尾扫描三元组表lsy,寻找col值为i都三元组进行转置
{
if(lsy.data[j].col==i)
{
lsy2.data[flag2].row=lsy.data[j].col;
lsy2.data[flag2].col=lsy.data[j].row;
lsy2.data[flag2].e=lsy.data[j].e;
flag2++;//计数器+1,指向本行下一个转置后元素的位置下标
}
}
}
}
//3.输出转置后的矩阵
int flag3=1;
for(int i=0;i<lsy.c;i++)
{
for(int j=0;j<lsy.r;j++)
{
if(lsy2.data[flag3].row==i+1&&lsy2.data[flag3].col==j+1)
{
cout<<lsy2.data[flag3].e<<' ';
flag3++;
}
else
cout<<"0"<<' ';
}
cout<<endl;
}
return 0;
}