PAT (Advanced Level) 1003 Emergency(25 分)

这是一个关于城市紧急救援的算法问题,你需要从当前城市出发,通过具有最短路径的路线尽快到达目标城市,并在途中召集最多的救援队伍。输入规格包括城市数量、道路数量、起始和目标城市,以及每个城市的救援队伍数量和各道路长度。输出应给出不同最短路径的数量和能聚集的最大救援队伍数。示例输入和输出涉及到dijkstra算法和dfs算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1003 Emergency(25 分)

As an emergency rescue team leader of a city, you are given a special map of your country. The map shows several scattered cities connected by some roads. Amount of rescue teams in each city and the length of each road between any pair of cities are marked on the map. When there is an emergency call to you from some other city, your job is to lead your men to the place as quickly as possible, and at the mean time, call up as many hands on the way as possible.

Input Specification:

Each input file contains one test case. For each test case, the first line contains 4 positive integers: N (≤500) - the number of cities (and the cities are numbered from 0 to N−1), M - the number of roads, C​1​​ and C​2​​ - the cities that you are currently in and that you must save, respectively. The next line contains N integers, where the i-th integer is the number of rescue teams in the i-th city. Then M lines follow, each describes a road with three integers c​1​​, c​2​​ and L, which are the pair of cities connected by a road and the length of that road, respectively. It is guaranteed that there exists at least one path from C​1​​ to C​2​​.

Output Specification:

For each test case, print in one line two numbers: the number of different shortest paths between C​1​​ and C​2​​, and the maximum amount of rescue teams you can possibly gather. All the numbers in a line must be separated by exactly one space, and there is no extra space allowed at the end of a line.

Sample Input:

5 6 0 2
1 2 1 5 3
0 1 1
0 2 2
0 3 1
1 2 1
2 4 1
3 4 1

Sample Output:

2 4

dijstra + dfs

 

#include <iostream>
#include <vector>
#define MAX_SIZE 505
#define INF 123456789
using namespace std;

int n, m, c1, c2, maxi, maxtemp, ways;
int maps[MAX_SIZE][MAX_SIZE]={0}, rescue[MAX_SIZE], d[MAX_SIZE];
vector<int> father[MAX_SIZE];
bool vis[MAX_SIZE] = {false};

void dijsktra()
{
    d[c1] = 0; 
    int i, j, u, mini;
    for (i = 0; i < n; i++)
    {
        u = -1;
        mini = INF;
        for (j = 0; j < n; j++)
        {
            if (vis[j] == false && d[j] < mini)
            {
                u = j;
                mini = d[j];
            }
        }
        if (u == -1)
        {
            return;
        }
        vis[u] = true;
        for (j = 0; j < n; j++)
        {
            if (vis[j] == false && maps[u][j] > 0)
            {
                if (maps[u][j] + d[u] < d[j])
                {
                    d[j] = maps[u][j] + d[u];
                    father[j].clear();
                    father[j].push_back(u);
                }
                else if (maps[u][j] + d[u] == d[j])
                {
                    father[j].push_back(u);
                }
            }
        }
    }
}

void dfs(int i)
{
    maxtemp += rescue[i];
    if (i == c1)
    {
        ways++;
        if (maxtemp > maxi)
        {
            maxi = maxtemp;
        }
        maxtemp -= rescue[i];
        return;
    }
    for (int j = 0; j < father[i].size(); j++)
    {
        dfs(father[i][j]);
    }
    maxtemp -= rescue[i];
}
int main()
{
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);

    int i, t, a, b;
    cin >> n >> m >> c1 >> c2;

    for (i = 0; i < n; i++)
    {
        cin >> rescue[i];
    }
    for (i = 0; i < m; i++)
    {
        cin >> a >> b >> t;
        maps[a][b] = t;
        maps[b][a] = t;
    }
    fill(d, d + MAX_SIZE, INF);
    dijsktra();
    dfs(c2);
    cout << ways << " " << maxi << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值