NumPy~学习总结(读书笔记作业)

NumPy是Python科学计算的基础包,提供多维数组对象ndarray和数学、统计运算等功能。 Ndarray拥有统一数据类型的元素,支持reshape操作。NumPy数据类型丰富,包括整数、浮点数等,可通过dtype对象描述。创建数组的方法有numpy.empty、numpy.zeros、numpy.ones和numpy.full。数组创建还可从已有数组或可迭代对象转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 NumPy?

        NumPy(Numerical Python 的缩写)是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。

                                                                                                                                                                                                                                ----NumPy官方中文文档

        应用场景:NumPy 通常与 SciPy(Python科学计算库)和 Matplotlib(Python绘图库)等软件包组合使用,这种组合方式被用来广泛地代替 MatLab 的使用。

安装和导入NumPy

使用Python包管理器pip命令安装

# windows下安装(或安装Ancaonda)
pip install numpy
#这里的NumPy需要小写为numpy,后面导入的时候也是这样!!!

使用前请先导入Numpy包!

import numpy 
#  通常起个名字:np
import numpy as np

查看你自己的NumPy版本

import numpy as np
print(np.__version__)
# 1.导包
# 2.双下划线

NumPy Ndarray 对象

Numpy提供了两种基本对象:

- ndarray:多维数组,后简称数组

- ufunc:能够对多维数组(数组)进行处理的特殊函数

        NumPy库的核心对象是n维数组对象ndarray,其中的所有函数都是对ndarray对象进行操作。(ndarray数组能对整块数据进行运算,而且其中存储的所有元素都是相同类型, 且每个元素在内存中都有相同存储大小的区域)ndarray能直接直接保存数据,而列表存储的是对象引用。

numpy.array(object, dtype = None, copy = Ture, order = None, subok = False, ndmin = 0)

参数说明:

名称 描述
object 可以是数组或者嵌套的数列
dtype 数组元素的数据类型,可选
copy 对象是否需要复制,可选
order 创建数组的样式,C为行方向,F为列方向,A为默认(任意方向)
subok 默认返回一个与基类类型一致的数组
ndmin 生成指定数组的最小维度

下面提供一些示例方便理解:

import numpy as np

# 创建一个一维
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值