133. 克隆图
问题描述
给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。
图中的每个节点都包含它的值 val
(int
) 和其邻居的列表(list[Node]
)。
class Node {
public int val;
public List<Node> neighbors;
}
测试用例格式:
简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1
),第二个节点值为 2(val = 2
),以此类推。该图在测试用例中使用邻接列表表示。
邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。
给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。
示例 1:
输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。
示例 2:
输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。
示例 3:
输入:adjList = []
输出:[]
解释:这个图是空的,它不含任何节点。
提示:
- 这张图中的节点数在
[0, 100]
之间。 1 <= Node.val <= 100
- 每个节点值
Node.val
都是唯一的, - 图中没有重复的边,也没有自环。
- 图是连通图,你可以从给定节点访问到所有节点。
解题思路与代码实现
主要思路:
- 先通过
BFS
访问整个连通图的所有节点,为每个节点生成对应的拷贝节点,以键值对的形式存储到哈希表中。 - 遍历哈希表,将拷贝节点们按照原节点的
neighbors
属性关联起来。
class Solution {
HashMap<Node, Node> map = new HashMap<>(); // 辅助哈希表,存储原节点与拷贝节点的键值对映射
public Node cloneGraph(Node node) {
if (node == null)
return null;
bfs(node); // BFS
// 连接所有克隆节点的邻居
for (Map.Entry<Node, Node> entry : map.entrySet()) {
Node oldNode = entry.getKey(); // 原节点
Node newNode = entry.getValue(); // 拷贝节点
for (Node neighbor : oldNode.neighbors) { // 拷贝节点关联邻居节点
newNode.neighbors.add(map.get(neighbor));
}
}
return map.get(node);
}
/**
* BFS访问该连通图
*/
private void bfs(Node node) {
LinkedList<Node> queue = new LinkedList<>(); // 辅助队列
queue.addLast(node); // node节点入队
while (!queue.isEmpty()) {
Node temp = queue.removeFirst();
if (map.containsKey(temp)) { // 访问过的节点不再访问
continue;
}
Node copy = new Node(temp.val, new ArrayList<>());
// 对所有访问过的节点生成拷贝节点,以键值对的形式存入map
map.put(temp, copy);
if (temp.neighbors != null && !temp.neighbors.isEmpty()) {
// 邻居节点入队
for (Node nd : temp.neighbors) {
queue.addLast(nd);
}
}
}
}
}
踩坑点
生成拷贝节点后如何按原连通图的关系将拷贝节点关联起来