加载模型后optimizer.step()处报错:RuntimeError: expected device cpu but got device cuda:0

本文介绍如何解决在使用PyTorch进行深度学习模型训练时,因GPU和CPU设备不匹配导致的RuntimeError。通过在加载模型参数前,确保所有张量都在相同的设备上,避免在optimizer.step()时出现错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整体的思路如下:

1、保存每个epoch模型的参数;

2、如果在训练时意外终止,,则自定义再次加载意外终止处保存的模型;

3、然后一切再开始,,比如接着训练测试什么的,,但是问题来了,,出现错误:RuntimeError: expected device cpu but got device cuda:0。。期望CPU设备而得到的是CUDA(GPU)。。

原因:optimizer加载参数时,tensor默认在CPU上,故需将所有的tensor都放到GPU上,否则:在optimizer.step()处报错:RuntimeError: expected device cpu but got device cuda:0

解决的详细代码如下:

    if opt.resume_path:
        print('loading checkpoint {}'.format(opt.resume_path))

        checkpoint = torch.load(opt.resume_path)

        assert opt.arch == checkpoint['arch']
        opt.begin_epoch = checkpoint['epoch']  # 从上次中断的epoch次重新开始,直至n_epochs
        model.load_state_dict(checkpoint['state_dict'])
        if not opt.no_train:
            optimizer.load_state_dict(checkpoint['optimizer'])
            # 因为optimizer加载参数时,tensor默认在CPU上
            # 故需将所有的tensor都放到cuda,
            # 否则: 在optimizer.step()处报错:
            # RuntimeError: expected device cpu but got device cuda:0
            for state in optimizer.state.values():
                for k, v in state.items():
                    if torch.is_tensor(v):
                        state[k] = v.cuda()

 

<think>好的,我现在要解决用户在训练SSD模型时遇到的CUDA设备类型不符的错误,也就是RuntimeError,提示设备类型是CPU而不是CUDA。我需要逐步分析可能的原因,并提供解决方案。 首先,用户提到错误是CUDA设备类型与实际不符,这可能涉及到模型、数据或计算设备之间的不匹配。通常,这种错误发生在尝试将应该在GPU上运行的张量或模型放到CPU上,或者反之。需要检查几个关键点: 1. **检查CUDA是否可用**:用户需要确认他们的环境中CUDA是否正确安装,并且PyTorch能够识别到GPU。可以通过运行`torch.cuda.is_available()`来验证。如果返回False,可能需要重新安装PyTorch的GPU版本或检查CUDA驱动。 2. **模型和数据的设备一致性**:确保模型和输入数据都在同一个设备上。如果模型加载到GPU上,那么输入数据也必须转移到GPU。通常在训练循环开始时,会使用`.to(device)`将模型和数据移动到指定设备。例如: ```python device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) images = images.to(device) ``` 3. **检查预训练权重加载是否正确**:如果在加载预训练模型时没有正确理设备,可能会导致参数留在CPU上。需要确保在加载模型时指定了正确的设备,或者在加载后手动将模型转移到GPU。 4. **数据加载器的问题**:数据预理阶段是否有可能将数据转换到CPU?比如自定义的Dataset类中,可能在`__getitem__`方法中没有正确理张量的设备。但通常,数据加载器返回的是CPU张量,需要在训练时显式转移到GPU。 5. **检查损失函数的设备**:损失函数计算时,如果预测值和目标值不在同一设备上,也会引发错误。确保目标数据(如边界框和标签)也被移动到GPU。 6. **环境配置问题**:用户可能安装了CPU版本的PyTorch,而不是支持CUDA的版本。需要检查PyTorch的安装命令是否正确,例如使用`pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113`这样的命令安装GPU版本。 7. **代码中的显式设备设置**:查看代码中是否有地方强制设置了设备为CPU,可能在模型定义或数据理时错误地指定了设备。 接下来,根据这些可能性,逐步给出解决方案。可能需要用户逐一排查,比如先确认CUDA可用性,再检查模型和数据是否在相同设备,最后检查环境配置。此外,引用中提到的SSD使用全卷积模型,可能在实现时某些层或参数未正确转移到GPU,需要特别注意模型结构中的设备一致性。 最后,生成的相关问题需要围绕SSD训练中的常见错误、CUDA配置、数据加载等方面展开,帮助用户进一步排查可能的问题。</think>针对SSD模型在自定义数据集训练时出现的`RuntimeError: CUDA device type CPU`错误,以下是分步解决方案: --- ### 1. **确认CUDA可用性** 首先检查PyTorch是否正确识别到GPU: ```python import torch print(torch.cuda.is_available()) # 应输出True print(torch.cuda.get_device_name(0)) # 显示GPU型号 ``` - 若输出`False`,说明环境未正确配置CUDA: - 重新安装GPU版PyTorch:使用与CUDA版本匹配的命令(如`pip install torch==1.12.1+cu113`)[^1]。 - 更新NVIDIA驱动至最新版本。 --- ### 2. **统一模型与数据的设备** 确保**模型**和**输入数据**均位于GPU: ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 将模型移至GPU model = SSDModel().to(device) # 数据加载后转移至GPU for images, targets in dataloader: images = images.to(device) targets = [t.to(device) for t in targets] ``` --- ### 3. **检查数据加载流程** - **自定义Dataset类**:确保返回的张量类型为`torch.Tensor`,而非NumPy数组或列表。 ```python class CustomDataset(Dataset): def __getitem__(self, idx): # 转换数据为张量 image = torch.tensor(image_data).float().to(device) # ❌ 错误!应在训练时转移设备 return image, target ``` > ✅ 正确做法:在训练循环中转移数据到设备,而非在Dataset中硬编码。 --- ### 4. **验证损失函数与模型输出** SSD的损失计算可能涉及`default_boxes`,需确保所有参与计算的张量位于同一设备: ```python # 检查损失函数输入 loc_preds = model(images) # 模型输出在GPU上 loss = criterion(loc_preds, gt_locs.to(device)) # 将标注数据移至GPU ``` --- ### 5. **排查模型结构中的CPU操作** 检查SSD实现中是否存在强制CPU操作: - **自定义层**:如`PriorBox`层生成先验框时,需将结果移至GPU: ```python class PriorBox(nn.Module): def forward(self): priors = ... # 生成先验框逻辑 return priors.to(device) # 确保输出在GPU上 ``` --- ### 6. **完整训练流程示例** ```python model = SSDModel().to(device) optimizer = torch.optim.SGD(model.parameters(), lr=0.001) for epoch in range(epochs): for images, targets in dataloader: images = images.to(device) targets = [t.to(device) for t in targets] outputs = model(images) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() ``` --- ### 常见错误原因总结 | 原因 | 解决方案 | |---------------------|----------------------------| | PyTorch未安装GPU版本 | 重新安装CUDA版PyTorch | | 数据未转移至GPU | 在训练循环中使用`.to(device)` | | 模型权重未完全转移 | 检查子模块是否均移至GPU | ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值