问题
k-means和GMM(高斯混合模型)都是聚类算法,这两者其实也有一定的相似之处,值得我们探究一下。通过之前的整理,我们对k-means算法已经有了一定的了解,这里就着重补充一下GMM的内容以及它们之间的区别与联系。
高斯混合模型(GMM)
● 定义:高斯混合模型是指具有如下形式的概率分布模型:
P ( x ∣ θ ) = ∑ k = 1 K α k ϕ ( x ∣ θ k ) 其 中 , α k 是 高 斯 混 合 系 数 , α k ≥ 0 且 ∑ k = 1 K α k = 1 ; θ k = ( μ k , σ k 2 ) ; ϕ ( x ∣ θ k ) 是 第 k 个 高 斯 分 布 模 型 的 概 率 密 度 函 数 , 具 体 形 式 如 下 : ϕ ( x ∣ θ k ) = 1 2 π σ k e x p ( − ( y − μ k ) 2 2 σ k 2 ) P(x|\theta)=\sum_{k=1}^{K} \alpha_{k} \phi (x|\theta_{k})\\ 其中,\alpha_{k}是高斯混合系数,\alpha_{k} \geq 0 \ 且\sum_{k=1}^{K}\alpha_{k}=1; \theta_{k}=(\mu_{k},\sigma_{k}^{2});\\ \phi (x|\theta_{k})是第k个高斯分布模型的概率密度函数,具体形式如下:\\ \phi (