文章目录
Bayes Optimization
1. 介绍
本章节贝叶斯优化用于机器学习模型调参使用,由J.Snoek(2012)提出,主要思想是给定优化的目标函数(只需要指定输入和输出即可,无需知道内部结构以及数学性质),通过不断添加样本点来更新目标函数的后验分布(posterior distribution),该过程相当于是高斯过程(通俗点说就是每次使用参数均均考虑之前参数的相关信息,从而更好的调整当前的参数)。
与常规的网格搜索或者随机搜索的区别是:
- 贝叶斯调参采用高斯过程,考虑之前的信息,不断的更新先验;网格搜索活随机搜索未考虑之前的信息
- 贝叶斯调参迭代次数相对较少,速度快;
- 贝叶斯调参相较于网格搜索,对非凸问题依然稳健,而网格搜索容易得到局部最优解。
下面主要主要分两部分介绍,分别是高斯过程和贝叶斯调参过程。
- 高斯过程,用于拟合优化目标函数
- 贝叶斯优化,包括"开采"和"勘探",用以花最少的代价找到最优值
2. 高斯过程
高斯过程是一系列随机变量的集合,有限个联合高斯分布, 高斯过程可以用于非线性回归、非线性分类和参数的寻优等。
2.1 多元高斯分布
-
高斯分布
定义