题目
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
n == height.length
2 <= n <= 10^5
0 <= height[i] <= 10^4
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/container-with-most-water
这道题很简单,就是测试例子是超大数组
int maxArea(int* height, int heightSize)
{
int max = 0;
int maxi = 0;
for (int i = 0; i < heightSize - 1; i++)
{
maxi = fmax(maxi, height[i]);
while (maxi > height[i] && i < heightSize - 2)
i++;
for (int j = i + 1; j < heightSize; j++)
{
max = fmax(max, (j - i) * fmin(height[i], height[j]));
}
}
return max;
}
优化1
给 j 也添加 while 语句
int maxArea(int* height, int heightSize)
{
int max = 0;
int maxi=0;
for (int i = 0; i < heightSize-1; i++)
{
maxi=fmax(maxi,height[i]);
while(maxi>height[i]&&i < heightSize-2)i++;
for (int j = i + 1; j < heightSize; j++)
{
while(j < heightSize-3&&height[j+1]>height[j])j++;
max = fmax(max, (j - i) * fmin(height[i], height[j]));
}
}
return max;
}
优化:双指针
int maxArea(int* height, int heightSize)
{
int ans = 0;
int left = 0, right = heightSize - 1;
//移动较小指针,二者相等则一起移动
while (left < right)
{
ans = fmax(ans, fmin(height[left], height[right]) * (right - left));
if (height[left] == height[right])
left++, right--;
else if (height[left] < height[right])
left++;
else
right--;
}
return ans;
}