习题:盛最多水的容器(C语言)

这篇博客探讨了一道力扣(LeetCode)上的编程题目,目标是找到一组垂直线使得它们与x轴构成的容器能容纳最多水。原始算法使用了多次循环,而经过优化的双指针方法显著提高了效率。通过移动较小高度的指针并计算当前容器面积,最终找到最大面积。这种方法在处理大型数据集时表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器。

示例 1:

输入:[1,8,6,2,5,4,8,3,7]

输出:49

解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例 2:

输入:height = [1,1]

输出:1

示例 3:

输入:height = [4,3,2,1,4]

输出:16

示例 4:

输入:height = [1,2,1]

输出:2

提示:

n == height.length

2 <= n <= 10^5

0 <= height[i] <= 10^4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/container-with-most-water

这道题很简单,就是测试例子是超大数组

int maxArea(int* height, int heightSize)
{
	int max = 0;
	int maxi = 0;
	for (int i = 0; i < heightSize - 1; i++)
	{
		maxi = fmax(maxi, height[i]);
		while (maxi > height[i] && i < heightSize - 2)
			i++;
		for (int j = i + 1; j < heightSize; j++)
		{
			max = fmax(max, (j - i) * fmin(height[i], height[j]));
		}
	}
	return max;
}

在这里插入图片描述

优化1
给 j 也添加 while 语句

int maxArea(int* height, int heightSize) 
{
	int max = 0;
    int maxi=0;
	for (int i = 0; i < heightSize-1; i++)
	{
        maxi=fmax(maxi,height[i]);
        while(maxi>height[i]&&i < heightSize-2)i++;
		for (int j = i + 1; j < heightSize; j++)
		{
            while(j < heightSize-3&&height[j+1]>height[j])j++;
			max = fmax(max, (j - i) * fmin(height[i], height[j]));
		}
	}
	return max;
}

在这里插入图片描述

优化:双指针

int maxArea(int* height, int heightSize)
{
	int ans = 0;
	int left = 0, right = heightSize - 1;
    //移动较小指针,二者相等则一起移动
	while (left < right)
	{
		ans = fmax(ans, fmin(height[left], height[right]) * (right - left)); 
		if (height[left] == height[right])
			left++, right--;
		else if (height[left] < height[right])
			left++;
		else
			right--; 
	}
	return ans;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值