二倍数对数组
给定一个长度为偶数的整数数组 arr
,只有对 arr
进行重组后可以满足 “对于每个 0 <= i < len(arr) / 2
,都有 arr[2 * i + 1] = 2 * arr[2 * i]
” 时,返回 true
;否则,返回 false
。
示例 1:
输入:arr = [3,1,3,6]
输出:false
示例 2:
输入:arr = [2,1,2,6]
输出:false
示例 3:
输入:arr = [4,-2,2,-4]
输出:true
解释:可以用 [-2,-4] 和 [2,4] 这两组组成 [-2,-4,2,4] 或是 [2,4,-2,-4]
提示:
0 <= arr.length <= 3 * 104
arr.length 是偶数
-105 <= arr[i] <= 105
方法一:(哈希+排序)
思路:
首先用一个无序图将数组中每个元素以及出现的个数保存起来;然后对比较元素x和2x元素的个数是否相同即可;
但是考虑到0元素的特殊性,以及负数元素的倍数关系,因此在处理过程中,需要先判断0元素的个数是否为偶数,如果不为偶数,那么直接可以返回false;另外对负数取绝对值即可;
代码如下:
class Solution {
public:
bool canReorderDoubled(vector<int>& arr) {
unordered_map<int,int> cnt;
for(int x : arr){
++cnt[x];
}
if(cnt[0]%2!=0) return false;
vector<int> vals;
vals.reserve(cnt.size());
for(auto& [x,_] : cnt){//遍历无序图中元素的一种方式
vals.push_back(x);
}
sort(vals.begin(),vals.end(),[](int a,int b){return abs(a)<abs(b);});
for(int x : vals){
if(cnt[2*x]<cnt[x]) return false;
cnt[2*x]-=cnt[x];
}
return true;
}
};
- 时间复杂度: 最坏的情况下,哈希表中有N个元素,那么排序的时间复杂度就是O(NlogN);
- 空间复杂度: 哈希表中装N个元素,那么空间复杂度为O(N)
方法二:(排序+队列)
思路:
很显然,“成对” 这样的关系,如果能及时的配对消掉,也会是个不错的办法,这样就想到了容器;
讲一下为什么要用队列,而不是用栈,因为栈 “先入后出” 那么每次比较的栈顶是当前更新过后的元素,而我们这里恰恰需要的是将“历史”的元素先消掉,然后一步一步看是否最后能消除 完,从而判断是否满足题意,因此就需要队列 “先入先出”;
其次就是讲下为什么要排序,而且还是先排序,就比如,会存在类似(2,4,0,0,1,8)这样的情况,两组“对”会存在交叉的这样的可能,那么,如果不排序,就会在半路把交叉的部分给消掉了,从而得不到正确的结果;
上代码:
class Solution {
public:
bool canReorderDoubled(vector<int>& arr) {
sort(arr.begin(),arr.end());
queue<int> que;
for(int x : arr){
if(que.empty()) que.push(x);
else{
int e=que.front();
if(x==2*e || e==2*x) que.pop();
else que.push(x);
}
}
return que.empty();
}
};
- 时间复杂度: 遍历一遍数组O(N);
- 空间复杂度: 哈希表中装N个元素,那么空间复杂度为O(N)