二倍数对数组

二倍数对数组

给定一个长度为偶数的整数数组 arr,只有对 arr 进行重组后可以满足 “对于每个 0 <= i < len(arr) / 2,都有 arr[2 * i + 1] = 2 * arr[2 * i]” 时,返回 true;否则,返回 false
示例 1:

输入:arr = [3,1,3,6]
输出:false
示例 2:

输入:arr = [2,1,2,6]
输出:false
示例 3:

输入:arr = [4,-2,2,-4]
输出:true
解释:可以用 [-2,-4] 和 [2,4] 这两组组成 [-2,-4,2,4] 或是 [2,4,-2,-4]

提示:

0 <= arr.length <= 3 * 104
arr.length 是偶数
-105 <= arr[i] <= 105

方法一:(哈希+排序)

思路:
首先用一个无序图将数组中每个元素以及出现的个数保存起来;然后对比较元素x和2x元素的个数是否相同即可;
但是考虑到0元素的特殊性,以及负数元素的倍数关系,因此在处理过程中,需要先判断0元素的个数是否为偶数,如果不为偶数,那么直接可以返回false;另外对负数取绝对值即可;

代码如下:

class Solution {
public:
    bool canReorderDoubled(vector<int>& arr) {
        unordered_map<int,int> cnt;
        for(int x : arr){
        	++cnt[x];
        }
        if(cnt[0]%2!=0) return false;
        vector<int> vals;
        vals.reserve(cnt.size());
        for(auto& [x,_] : cnt){//遍历无序图中元素的一种方式
        	vals.push_back(x);
        }
        sort(vals.begin(),vals.end(),[](int a,int b){return abs(a)<abs(b);});
        for(int x : vals){
        	if(cnt[2*x]<cnt[x]) return false;
        	cnt[2*x]-=cnt[x];
        }
        return true;
    }
};
  • 时间复杂度: 最坏的情况下,哈希表中有N个元素,那么排序的时间复杂度就是O(NlogN);
  • 空间复杂度: 哈希表中装N个元素,那么空间复杂度为O(N)

方法二:(排序+队列)

思路:
很显然,“成对” 这样的关系,如果能及时的配对消掉,也会是个不错的办法,这样就想到了容器

讲一下为什么要用队列,而不是用栈,因为栈 “先入后出” 那么每次比较的栈顶是当前更新过后的元素,而我们这里恰恰需要的是将“历史”的元素先消掉,然后一步一步看是否最后能消除 完,从而判断是否满足题意,因此就需要队列 “先入先出”

其次就是讲下为什么要排序,而且还是先排序,就比如,会存在类似(2,4,0,0,1,8)这样的情况,两组“对”会存在交叉的这样的可能,那么,如果不排序,就会在半路把交叉的部分给消掉了,从而得不到正确的结果;

上代码:

class Solution {
public:
    bool canReorderDoubled(vector<int>& arr) {
        sort(arr.begin(),arr.end());
        queue<int> que;
        for(int x : arr){
            if(que.empty()) que.push(x);
            else{
                int e=que.front();
                if(x==2*e || e==2*x) que.pop();
                else que.push(x);
            }
        }
        return que.empty();
    }
};
  • 时间复杂度: 遍历一遍数组O(N);
  • 空间复杂度: 哈希表中装N个元素,那么空间复杂度为O(N)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值