统计各位数字都不同的数字个数

该博客讨论了一个使用动态规划方法解决的数学问题,即统计在给定范围内各位数字都不相同的整数数量。通过递归公式,展示了如何从n=1到n=3逐步计算,并解释了时间复杂度和空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计各位数字都不同的数字个数

给你一个整数 n ,统计并返回各位数字都不同的数字 x 的个数,其中 0 <= x < 10n 。

示例 1:

输入:n = 2
输出:91
解释:答案应为除去 11、22、33、44、55、66、77、88、99 外,在 0 ≤ x < 100 范围内的所有数字。
示例 2:

输入:n = 0
输出:1

提示:
0 <= n <= 8

思路:

  • 根据排列组合的知识动态规划求解

  • 当n==1时,0~9,答案为res(n=1)=10

  • 当n==2时,首先10以内的0~9还是正常加上,两位数就从十位和个位分析,
    十位可以是除0以外的任意一位数(故有9种可能),当十位数选定以后,
    个位数可以是除开与十位数相同的那一位的任意一种数字(所以也是9种)
    动态规划这个问题,所以这时候答案 res(n = 2)=res(n=1)+9*9;

  • 当n==3时,同样的道理:百位可以是除0以外的数(9种),
    十位可以是与百位不同的任意一个数(9种),
    个位可以是与百位和十位均不同的一个数(8种),res(n=3)=res(n=2)+ 9* 9* 8

  • 所以当n继续变大的时候,递归表达式 f(n)=f(n-1)+9* 9* 8* 7* 6*. …后面一共n项

class Solution {
public:
    int countNumbersWithUniqueDigits(int n) {
        if (n == 0) {
            return 1;
        }
        if (n == 1) {
            return 10;
        }
        int ans = 10, cur = 9;
        for (int i = 0; i < n - 1; ++i) {
            cur *= 9 - i;
            ans += cur;
        }
        return ans;
    }
};
  • 时间复杂度: O(n),循环n次
  • 空间复杂度: 无额外空间消耗,因此空间复杂度为O(1).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值