线性代数学习笔记之行列式

1.  二阶三阶行列式


1.1  行列式的引入

定义一个二元一次方程组

eg: \left\{\begin{matrix} 3x+4y=5(1)\\ 7x+9y=11(2) \end{matrix}\right.

(1)求解 消 y:将方程(1)两边同时乘以9,方程(2)两边同时乘以4,可得:

eg: \left\{\begin{matrix} 3*9x+4*9y=5*9\\ 7*4x+9*4y=11*4\end{matrix}\right.

解得:x=\frac{5*9-11*4}{3*9-7*4}

(2)求解 消 x:将方程(1)两边同时乘以7,方程(2)两边同时乘以3,可得:

eg:\left\{\begin{matrix} 3*7x+4*7y=5*7\\ 7*3x+9*3y=11*3 \end{matrix}\right.

解得:y=\frac{5*7-11*3}{4*7-9*3}

(3)观察x,y的结果,为了使结果表达的更清晰些,故定义了一个规则,规则如下:

x=\frac{5*9-11*4}{3*9-7*4}=\frac{\begin{vmatrix} 5 & 11\\ 4 & 9 \end{vmatrix}}{\begin{vmatrix} 3 & 7\\ 4 & 9 \end{vmatrix}}=\frac{\begin{vmatrix} 5 &4 \\ 11 & 9 \end{vmatrix}}{\begin{vmatrix} 3 & 4\\ 7 & 9 \end{vmatrix}}              y=\frac{5*7-11*3}{4*7-9*3}=\frac{\begin{vmatrix} 5 & 11\\ 3 & 7 \end{vmatrix}}{\begin{vmatrix} 4 & 9\\ 3 & 7 \end{vmatrix}}=\frac{\begin{vmatrix} 3 & 5\\ 7 & 11 \end{vmatrix}}{\begin{vmatrix} 3 & 4\\ 7 & 9 \end{vmatrix}}

小贴士:行列式用D表示,即英文Determinant的首字母。


1.2  二阶行列式

(1)定义:由 2行 2列 4个元素构成的式子。

(2)表示:\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}=a_{11}*a_{22}-a_{21}*a_{12}.

备注:

1. 行列式计算结果为一个数,即结果为标量

2. 行列式中某元素用a_{ij}表示,代表第 i 行,第 j 列的元素。

3. 使用行列式的定义计算行列式的值时,几阶行列式则每一项就有几个元素相乘。

4. 一阶行列式:\begin{vmatrix} a_{11} \end{vmatrix}= a_{11},“| |”非绝对值。


1.3  三阶行列式

(1)定义:由 3行 3列 9个元素构成的式子。

(2)表示方法:

 

(3)常见特殊行列式:

   主对角线-三角行列式:                                     对角线-三角行列式:

   D_{1}=\begin{vmatrix} a_{11} & a_{12} & a_{13}\\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11} * a_{22}*a_{33}        D_{2}=\begin{vmatrix} a_{11}& 0 & 0\\ a_{21} & a_{22}& 0\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}*a_{22}*a_{33}

   主对角线-角行列式:

   D_{3} =\begin{vmatrix} a_{11}& 0 &0 \\ 0 &a_{22} &0 \\ 0 & 0 & a_{33} \end{vmatrix}=a_{11}*a_{22}*a_{33}

   副对角线-三角行列式:                                      对角线-三角行列式:

   D_{4}=\begin{vmatrix} a_{11} & a_{12}& a_{13}\\ a_{21} & a_{22} & 0 \\ a_{31} & 0 & 0 \end{vmatrix} = -a_{13} * a_{22}*a_{31}     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值