JAMA Neurology:临床前阿尔茨海默病:研究发现女性tau蛋白积累更快

阿尔茨海默病(AD)在女性中的患病率几乎是男性的两倍。越来越多针对非AD 成年人的证据表明,女性比同龄男性表现出更高的 tau 蛋白沉积,尤其是在 β- 淀粉样蛋白(Aβ)水平升高的情况下,但tau 蛋白积累速率的性别差异尚无定论。

2025年3月3日,JAMA Neurology (F=20.9) 发表了一项题为“Sex Differences in Longitudinal Tau-PET in Preclinical Alzheimer Disease“的研究。通过对6项纵向队列ADNI、WRAP等的1376名临床前阿尔茨海默病AD患者进行荟萃分析,首次证实女性在β-淀粉样蛋白阳性状态下,tau蛋白累积速度显著快于男性,尤其在颞叶和枕叶关键脑区。这一发现揭示了女性AD患病率是男性2倍的核心病理机制。

图片

研究团队整合了来自阿尔茨海默病神经影像学倡议(ADNI)、伯克利老龄化队列研究(BACS)、BioFINDER、哈佛老龄化大脑研究(HABS)、梅奥诊所老龄化研究(MCSA)和威斯康星阿尔茨海默病预防登记处(WRAP)的数据,共纳入1376名参与者。研究采用混合效应模型分析了性别与基线Aβ状态对纵向tau-PET的影响,并进一步探讨了APOEε4基因的交互作用。

图片

该图表展示了性别与β-淀粉样蛋白(Aβ)在纵向Tau正电子发射断层扫描(PET)中的交互作用,具体分析了不同脑区的Tau蛋白积累情况。图表分为七个子图(A-G),分别对应不同的脑区。

图片

图片

结果显示,在高基线Aβ水平的个体中,女性的tau蛋白积累速度显著快于男性,主要集中在下颞叶(β=-0.14, P=0.009)、颞叶颞回(β=-0.13, P=0.02)和外侧枕叶(β=-0.15, P=0.009)。此外,在APOEε4携带者中,女性的下颞叶tau蛋白积累速度比男性快10(β=-0.10, P=0.01)。这些结果表明,性别差异在AD的病理进展中十分重要。

这项元分析研究探讨了临床前期阿尔茨海默病中性别差异对tau蛋白积累速率的影响。研究发现,在高β-淀粉样蛋白水平的个体中,女性的tau蛋白积累速率快于男性,且这种差异在APOEε4基因携带者中更为显著。研究建议在抗Aβ和抗tau治疗时考虑性别的特异性时间安排,以提高治疗效果。

未来的研究将聚焦于性别特异性生物标志物和治疗方法的开发。目前,针对Aβ和tau蛋白的单克隆抗体(如lecanemab和donanemab)已显示出临床效果,但其疗效可能因性别差异而有所不同。例如,lecanemab在女性中的疗效可能比男性低31%。这些发现提示,在未来的临床试验和治疗策略中,应考虑性别因素,以优化治疗效果并减少性别间的治疗不平等。

参考文献:

Coughlan GT, Klinger HM, Boyle R, et al. Sex Differences in Longitudinal Tau-PET in Preclinical Alzheimer Disease: A Meta-Analysis. JAMA Neurol. Published online March 3, 2025. doi:10.1001/jamaneurol.2025.0013

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进与应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的多项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹配、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹配、回文检测等。 阅读建议:由于哈希涉及较多数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值