Anaconda进行虚拟环境管理(conda命令总结)

本文详细介绍Anaconda的安装、配置及使用方法,包括conda命令的分类、虚拟环境管理和包管理等内容,帮助读者快速掌握Anaconda的基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anaconda(大蟒蛇),是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。而它的conda是包及其依赖项和环境的管理工具。下面就来总结一下conda命令。


自身管理

在这里插入图片描述
点击Anaconda Powershell Prompt或Anaconda Prompt
(默认进入 Anaconda 的基准虚拟环境 – base)

1. help/version

conda --help / conda -h 
conda --version / conda -V

在这里插入图片描述
在这里插入图片描述
也可以将其他命令后面跟–help获取该命令详细信息
如:

conda update --help

在这里插入图片描述

2. 更新命令集合

Anaconda 将 anaconda、conda、python 都当成第三方模块来管理

conda update --all  # 更新 Anaconda 当前虚拟环境中的所有的第三方模块
conda upgrade --all  # 同上
conda update anaconda  # 更新 Anaconda 整体版本
conda update conda  # 更新 conda 命令
conda update python  # 更新 Anaconda当前的Python环境到支持的最新版本

3. 配置命令集合

conda info  # 显示 Anaconda 当前的相关信息
conda info -e  # 列出 Anaconda 当前的所有的虚拟环境、当前活跃的虚拟环境前有*

在这里插入图片描述

在envs directories下,我们可以看到Anaconda创建的虚拟环境会放在哪里,这里我的电脑中首要的容器目录为C:\Users\new.conda\envs

在这里插入图片描述

Anaconda更加详细的配置信息:

conda config --show

在这里插入图片描述

此外,还有:

conda config --show channels
conda config --add channels xxxx

虚拟环境管理

单独用 Python 创建虚拟环境,我们需要自行指定虚拟环境的容器目录,而且Python 所有的虚拟环境都是基于当前同一个 Python 的版本
而 Anaconda 创建虚拟环境基于的Python版本可以不同,也可以将某个位置上的虚拟环境复制 (克隆、导出) 到另外的位置上

1. 虚拟环境的查看

conda info -e 
conda env list

2. 虚拟环境的创建及使用

默认创建虚拟环境的位置是在 conda config --show 中显示的虚拟环境容器目录中,即我们上面提到的C:\Users\new.conda\envs,使用

conda create -n test

在该目录下创建虚拟环境test

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
可以看到我们现在创建了一个纯净的Python虚拟环境。

如果不想把环境创建到这里,我们可以用

conda create --prefix=D:/ProgramData/Anaconda3/envs/pytorch

来改变虚拟环境创建的位置

或者直接修改Anaconda默认设置

conda config --add envs_dirs 虚拟环境的文件夹位置

也可以在创建虚拟环境时直接安装一些需要的包,直接在创建虚拟环境命令后面以空格间隔需要安装的包名,如

conda create -n testenv numpy scipy

在这里插入图片描述
也可以加上要安装的包的版本

conda create -n env numpy=1.1 scipy=1.25

最最重要的是,Anaconda可以指定虚拟环境基于的Python版本

conda create -n envname python=3.7

我一般用这个:

conda create --prefix=E:\Anaconda3\envs\PyTorch_2.0.1 python=3.9

3. 虚拟环境的克隆/导入导出

(1)克隆

# testenv 整体复制本机的另一个名称的虚拟环境中
conda create -n newenvname --clone oldenvname

(2)导出

conda env export > save_env_config.yml
# 导出当前虚拟环境的配置到 yml 文件
# 如:conda env export > c:\Dev\anaconda3\envs\base_env_config.yml

(3)导入

在另一个位置或另一台计算机上导入相同的环境配置

conda env create -n envname -f save_env_config.yml
# 如:conda create -n newbase -f c:\Dev\anaconda3\envs\base_env_config.yml

4. 虚拟环境的删除

conda remove -n envname --all
# 可能需要手动删除对应的虚拟环境所在的文件夹

包管理

包管理 – 类似 pip ,也可以使用 pip

1. 安装

在当前虚拟环境中安装 package(s)

conda install packagename1 packagename2 ....

在指定虚拟环境中安装 package(s)

 conda install -n envname packagename1 packagename2 ...

2. 删除

在当前虚拟环境中删除 package(s)

conda remove packagename1 packagename2 ....

在指定虚拟环境中删除 package(s)

 conda remove -n envname packagename1 packagename2 ...

在这里插入图片描述

3. 查看

conda list

4. 更新

在当前虚拟环境中更新 package(s)

conda update packagename1 packagename2 ....

在指定虚拟环境中删除 package(s)

 conda update -n envname packagename1 packagename2 ...

5. 查询|检索可用的第三方模块

Anaconda所有的可用的第三方模块都是Anaconda 自己维护,因此有时第三方包可能版本有些滞后,这时就要用pip命令

conda search packagename  # 模糊查询 
conda search --full-name package_full_name  # 精确查询

6. 清理

conda clean -p  # 清除无用的 package 
conda clean -i  # 清空 Anaconda 缓存

总结

### 彻底删除 Anaconda 中所有虚拟环境及其关联文件 为了确保完全移除所有的 Conda 虚拟环境以及它们的相关文件,可以按照如下方法操作: #### 1. 列出当前存在的所有环境 通过运行下面的命令来获取环境中全部列表: ```bash conda env list ``` 此命令会显示所有已创建的 conda 环境。 #### 2. 删除指定环境 对于每一个不需要保留的环境名称 `env_name` ,执行以下指令将其卸载: ```bash conda env remove --name env_name ``` 每条语句后面都应该加上具体的环境名字替换掉 `env_name` 。这一步骤应该针对之前列出的所有非默认(base)环境重复进行直到只剩下一个基础环境为止[^1]。 #### 3. 清理缓存包数据 完成上述清理工作后,还需要进一步清除下载并存储于本地磁盘上的历史版本软件包副本。可以通过这条命令实现: ```bash conda clean --all ``` 它不仅能够释放大量空间资源,还可以帮助保持系统的整洁有序。 #### 4. 移除 .condarc 配置文件和个人设置 有时个人化的配置也可能引起冲突或残留问题。可以从用户的主目录下找到 `.condarc` 文件,并考虑是否要一并删去: ```bash rm ~/.condarc ``` 注意这项措施可能会改变一些自定义选项,在采取行动前最好先备份重要参数设定。 #### 5. 卸载 Anaconda 安装程序本身 最后一步则是正式地从系统中去除整个 Anaconda 发行版。具体做法依据操作系统不同而有所差异;对于 Linux 和 macOS 用户来说,通常只需简单地移除安装路径下的 anaconda 或 miniconda 文件夹即可达到目的。例如: ```bash rm -rf ~/anaconda3/ ``` 或者如果是 Miniconda 的话则可能是: ```bash rm -rf ~/miniconda3/ ``` 另外还需记得编辑 shell 初始化脚本(比如 `.bashrc`, `.zshrc`),从中去掉任何有关于 Anaconda 的 PATH 变量修改部分,从而保证彻底解除与旧有安装之间的联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值