2.实践内容
2.1主要学习内容
本实验以实际销售数据为基础,系统学习并实践了数据探索、特征工程、机器学习建模与模型评估等核心环节。具体包括:
- 理论知识梳理
- 掌握了机器学习的基本流程,包括数据采集、预处理、特征提取、模型训练、评估与可视化。
- 深入理解了随机森林的工作原理,包括其Bagging集成机制、特征重要性评估等。
- 熟悉了分类模型的常用评估指标如准确率、精确率、召回率、F1分数、ROC曲线及AUC等。
- 项目实际操作
- 使用pandas进行数据加载与处理,分析各项数值分布和类别特征。
- 使用matplotlib实现多种可视化,直观展示高、低销售样本在不同特征下的分布规律。
- 结合sklearn库进行数据集划分、模型训练和评估,掌握了高低销售分类业务的完整闭环流程。
2.2 项目选题及方案
本项目基于《sales_data.xlsx》销售数据,选题为“基于随机森林的销售高低预测与特征影响分析”。
项目背景是实际经营过程中,企业需要通过数据分析提前预测高额销售订单,并找出影响销售的主要驱动因素,从而优化产品策略、库存管理和市场投放。
研究思路与方法如下:
- 通过统计分析和分类标签,将销售额较高的订单设定为正类(高销售)。
- 采用特征编码等手段,将日期、城市、产品等业务字段转化为数值变量并进行深入分析。
- 利用随机森林进行高、低销售订单的自动分类与预测,并通过其特征重要性解释,高效找出影响销售额提升的关键因素,助力业务决策数据化。
- 技术手段包括描述性统计、可视化分析(热力图、条形图等)、机器学习建模、模型评估与优化。
现
2.3.1 数据说明
数据集包含基本字段如下:
字段名 | 类型 | 说明 |
---|---|---|
Date | 日期 | 订单日期 |
Product | 类别型 | 产品名称 |
City | 类别型 | 销售城市 |
Quantity | 数值型 | 销售数量 |
Price | 数值型 | 单价 |
Sales | 数值型 | 销售额 |
数据样本统计如下:
- 总计 1000 条订单记录,无缺失值。
- 各特征统计描述见下表:
Quantity | Price | Sales | |
---|---|---|---|
均值 | 25.48 | 155.30 | 3935.74 |
最小 | 1.0 | 10.17 | 13.23 |
最大 | 49.0 | 299.78 | 14473.13 |
2.3.2 数据预处理
- 对Product和City等类别型变量进行数字编码。
- 日期类型拆分为年份、月份,便于季节特征分析。
- 以销售额70%分位数为阈值,定义高销售(标签为1)和低销售(标签为0)两个类别。
订单标签分布如下:
标签 | 数量 |
---|---|
低销售(0) | 700 |
高销售(1) | 300 |
2.3.3 数据探索与可视化
- 特征相关性热力图
可以观察到Sales与Price、Quantity等变量呈现出较强正相关,说明高单价、高销量订单更易获得高销售额。
- 类别变量与高销售关系柱形图
- 如Product、City、Month,部分月份和产品种类对高销售有明显影响。
- 数值特征分布
- 高/低销售订单的销售额、数量分布有着明显差异,高销售大多集中在订单金额5000元以上,数量大、价格高的订单更容易成为高销售。
- 价格整体分布较均匀,表明订单单价区间广泛,适合多样化产品策略。
2.3.4 数据集划分与建模
- 选取Product、City、Quantity、Price、Year、Month共6个特征建模,高销售标签作为目标变量。
- 采用80%训练集和20%测试集,并用随机森林分类器(n_estimators=100)建模,充分利用Bagging集成思想实现对高销售的有效识别。
2.3.5 模型评估与结果分析
- 分类报告与混淆矩阵
Precision | Recall | F1-score | Support | |
---|---|---|---|---|
低销售(0) | 0.979 | 1.000 | 0.989 | 140 |
高销售(1) | 1.000 | 0.950 | 0.974 | 60 |
总体 | 0.985 | 0.985 | 0.985 | 200 |
混淆矩阵如下:
预测低销售 | 预测高销售 | |
---|---|---|
实际低销售 | 140 | 0 |
实际高销售 | 3 | 57 |
- ROC曲线与AUC
- 曲线下的面积AUC=1.00,表示模型对于高低销售订单的区分能力很强。
- 特征重要性分析
特征名 | 重要性分数 |
---|---|
Price | 0.464 |
Quantity | 0.449 |
Month | 0.037 |
Product | 0.020 |
City | 0.020 |
Year | 0.009 |
可见,订单销售额主要受单价和数量影响,月份波动次之,而城市、产品、年份影响较小。
2.3.6 结果与建议
- 本模型对销售额高低预测表现极佳,主因是高价格、高数量订单极大提升了销售额。
- 建议企业在营销和库存管理时,优先关注高单价、高热销数量的产品,重点把控销售旺季,针对性布局促销资源。
- 可针对影响较小的城市、产品设计差异化策略,提升整体运营效果。
- 后续可引入客户画像、促销活动、市场环境等新特征,优化模型泛化能力,使其在实际经营中指导精准化决策。
通过本次销售数据随机森林建模实验,我们掌握了从数据探索、预处理到建模与解释的完整流程,深入理解了高销售驱动力量,并为企业数字化运营提供了切实可行的数据依据。模型有极高应用价值,能够有效助力企业实现销售业绩提升和精准客户管理。
3.结论与建议
本次销售数据分析项目通过随机森林模型对销售额高低进行了分类研究,并结合多种可视化方法深入挖掘了影响订单高销售的关键因素。经过数据探索、特征编码、样本分层以及模型训练与评估,实验结果表明,利用销售数量(Quantity)、单价(Price)、月份等特征,可以对高销售订单进行准确预测。模型在测试集上的准确率高达98.5%,AUC达到1.00,表明模型对高销售和低销售订单的区分能力非常强,具有较高的实际应用价值。
通过特征重要性分析可以发现,Price和Quantity对预测订单高销售最为关键。高单价和大批量的订单大多成为高销售订单。Month也具有一定影响,这提示企业可以关注季节或促销周期对销售表现的拉动作用。相对而言,城市和产品类型的权重较低,说明在现有数据结构下,市场覆盖和产品种类对销售波动影响较小,企业可以在核心畅销产品和主渠道城市基础上,进一步挖掘新增长点。
结合以上分析结果,建议企业今后在销售管理和市场策略制定中,从以下几个方面入手提升业绩:(1) 重点关注高价格、高批量的产品订单,制定更有针对性的激励政策和库存保障策略;(2) 分析订单旺季变化和月份特征,提前做好促销和产能规划,把握销售高峰期;(3) 对于销量暂时不高的城市和产品,可以通过差异化营销、促销引流等方式,提升整体市场渗透率。此外,建议后续进一步拓展数据维度,将客户历史行为、渠道活动、会员等级等作为新的分析变量,有助于模型细化客户画像,实现更精准的销售预测和个性化服务。综合来说,本项目充分展示了数据挖掘和机器学习方法在业务增长和决策优化中的巨大潜力,对企业数字化转型和市场竞争力提升有重要参考意义。