ubuntu重装系统+基础设置+CUDA+Pycharm+anaconda

本文介绍了在Ubuntu系统中进行重装、使用conda创建Python虚拟环境、卸载与安装显卡驱动(如NVIDIA)、配置PyCharm、安装与管理Anaconda3、CUDA和cudnn,以及处理输入法和基本Linux命令的相关步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Anaconda-用conda创建python虚拟环境 - 知乎

1.ubuntu重装系统

先备份再卸载,卸载干净(删除ubuntu所在分区,ubuntuEFI,ubuntu启动盘)#注意不是windowsd的,不要参考默认磁盘位置,我的就不是。可以借助磁盘管理软件 DiskGenius 区分ubuntu和为Windows分区 ,ubuntu分区会变红

(1)数据备份,U盘挂载 #我没试过Ubuntu20.04重装系统过程(多图,含保存文件+卸载旧系统+安装新系统)_ubuntu重装系统-CSDN博客

 (2)卸载教你彻底卸载Ubuntu双系统,去污不残留-CSDN博客

Ubuntu20.04 更换国内源_ubuntu2004换源-CSDN博客
 

换源要注意源的版本和系统版本一致

ubuntu20.04搜狗输入法安装不成功完美解决-CSDN博客

2.显卡驱动

【ubuntu环境配置】超详细ubuntu20.04/22.04安装nvidia驱动/CUDA/cudnn_ubuntu20安装nvidia显卡驱动-CSDN博客

安驱动的时候需要注意版本对应、安装包名称和路径要拍照保存,因为到时候是通过命令行手敲,看不见系统界面!!

查看显卡驱动是否安装成功sudo nvidia-smi,注意有sudo,没有空格。

3.Pycharm

下载社区版,安装,

第一次运行:在pycharm的bin文件夹下打开终端,在终端cd打开文件要敲好多字,或许有快捷输入吧

./pycharm.sh

 打开以后,会问是否新建file或者打开一个项目,按提示来就行

设置pycharm桌面快捷打开图标,Tools--Create Desktop Entry--ok

4.anaconda

【超详细讲解】linux安装anaconda和pytorch及常见报错_anaconda3-2021.11-linux-x86_64.sh: 516: syntax err-CSDN博客

可以直接把代码复制下来,写成脚本.sh文件,运行这个.sh文件就可以。打开文件编辑软件然后可以选保存位置。大概安装流程。

(1)下载安装包,注意版本别太新,我看到了一篇文章讲版本对应的但我没找到

Anaconda与Python版本对应关系 [官方最新] - 知乎

(2)//修改sh文件权限,如果权限太小可能安装失败,或者安装上了也不出现(base)找不到conda命令

  • sudo chmod 777 Anaconda3-2021.05-Linux-x86_64.sh

mkdir: 无法创建目录 “/usr/local/anaconda3”: 权限不够

(3)安装完了还需要添加cuda到bashrc环境变量   #不然打开终端没有(base)

  • //添加环境变量

  • echo 'export PATH="~/anaconda3/bin:$PATH"' >> ~/.bashrc #echo是自动写入文件命令,比找.bashrc文件再修改简单(很多教程都是手动改,而且没用!)

  • //令.bashrc生效

  • source .bashrc  #注意不要加sudo

 5.CUDA

 CUDA版本与显卡驱动版本的对应关系:CUDA版本需要与显卡驱动版本兼容。 一般来说,较新的CUDA版本需要较新的显卡驱动。 同样,较旧的CUDA版本可能需要在较旧的显卡驱动上运行。

Ubuntu 20.04安装CUDA & CUDNN 手把手带你撸_ubuntu20.04 cuda安装-CSDN博客
Pytorch-(二)搭建Pytorch环境(Pytorch2.1+CUDA12.1+Anaconda3_2023+Pychar - 哔哩哔哩

清华大学开源软件镜像站 | Tsinghua Open Source Mirror
Ubuntu 20.04安装CUDA 11.4, cuDNN 8.24 - 知乎

(1)cuda版本确定好,官网下载失败

将.com改成.cn

(2)nvidia-smi 显卡最大支持的CUDA版本号,不是已经安装的cuda版本

(3)安装命令,运行一两分钟才会出现accept问题,

sudo sh cuda_11.7.0_515.43.04_linux.run

 遇到的问题【X】的意思是选中,回车可以把中括号里面的x消除掉。第一个是选择驱动,给他回车取消,因为我们已经有安装驱动了,然后移动到install回车安装

安装后必须修改环境变量

安装完成后,屏幕上会出现安装程序的安装summary,里面会警告说没有安装完全,这个可以不用管,因为我们没有安装驱动程序。总结里面会有两行提示你修改PATH变量和LD_LIBRARY_PATH变量。打开~/.bashrc,在末尾追加下面两行即可,具体路径看总结里面给出的路径。

sudo gedit ~/.bashrc
# cuda安装位置
export PATH=$PATH:/usr/local/cuda-12.1/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/extras/CUPTI/lib64

保存退出之后,source ~/.bashrc

检查CUDA是否安装成功

终端输入nvcc -V,若有输出,则安装成功

 6.cudnn

下载的时候需要注册一下,很简单的!注册登陆完了再点进去这个链接,别登陆了自己找。搜索cudnn出来第一个就是。CUDA Deep Neural Network (cuDNN) | NVIDIA Developer

Ubuntu22.04 LTS + CUDA12.3 + CUDNN8.9.7 + PyTorch2.1.1_cuda12.3 对应的cudnn版本-CSDN博客

 下载deb需要下三个,或者下载tar压缩包,然后解压放到指定路径。路径和cuda-12.1这两个位置需要修改,不然复制教程上的代码会出现找不到文件。

Ubuntu22.04 LTS + CUDA12.3 + CUDNN8.9.7 + PyTorch2.1.1_cuda12.3 对应的cudnn版本-CSDN博客

7.输入法

(1)输入法用ibus智能拼音

(2)搜狗 不是所有ubuntu版本都可用

ubuntu20.04安装教程有点不一样,需要卸载ibus

安装不成功就重新安装一下。

参考https://blog.csdn.net/NX4494/article/details/135418838?spm=1001.2014.3001.5502

8.基础命令

截图:ctrl+shift+printscreen

在终端里复制和粘贴:ctrl+shift+c或v

打开.sh文件:bash xx.sh # 注意不能在python环境下,不然报错

移动文件夹:sudo mv xxx/ /opt/

查看驱动版本:nvidia-smi #注意没有空格

重启:sudo reboot #很多教程都有,注意不要复制上,注意把所有东西保存好再重启

8.

9.

10.

<think>好的,我现在需要帮助用户解决在Python中导入torch模块时出现的ModuleNotFoundError错误。首先,我应该回忆一下这个错误的常见原因。根据用户提供的引用,ModuleNotFoundError通常是因为模块未正确安装或路径问题导致的。用户特别提到了torch模块,所以需要针对PyTorch的安装问题进行排查。 首先,我需要确认用户是否正确安装了PyTorch。常见的安装方法是通过pip或conda。用户可能直接运行了`pip install torch`,但有时候这可能不会安装完整的PyTorch,特别是如果用户没有指定正确的渠道或者版本。比如,PyTorch官网推荐使用特定的命令来安装,根据系统、CUDA版本等不同,安装命令也会不同。如果用户只是简单地使用`pip install torch`,有时候可能会安装一个不兼容的版本,或者没有包含必要的组件,导致导入失败。 然后,考虑环境问题。用户是否在正确的Python环境中安装了PyTorch?比如,用户可能安装了多个Python环境,或者使用了虚拟环境但没有激活,导致安装的库不在当前使用的环境中。这时候,用户需要检查当前使用的Python解释器路径,并确保在该环境中安装了torch。 接下来是路径问题。如果PyTorch安装到了非标准路径,或者Python的sys.path中没有包含安装路径,也会导致导入失败。但这种情况相对少见,尤其是在使用虚拟环境或conda管理的情况下,路径通常会自动配置正确。 另外,用户提到的引用中有提到'torch._six'和'torch_scatter'模块的错误,但用户现在的问题是关于torch本身的导入错误。可能需要区分是torch主模块的问题,还是子模块的问题。如果用户导入的是torch本身,那么问题更可能出在PyTorch的主包安装上,而不是子模块。 可能的解决步骤应该是: 1. 确认是否正确安装PyTorch。推荐用户使用官网提供的安装命令,比如`pip3 install torch torchvision torchaudio`,或者根据系统选择conda安装方式。 2. 检查Python环境。确保安装torch的环境和运行代码的环境一致。 3. 重新安装或升级PyTorch。有时候安装过程中可能出现网络问题导致安装不完整,重新安装可能解决。 4. 验证安装。安装后,在Python交互环境中运行`import torch`,看是否成功,并检查版本。 5. 如果使用GPU版本的PyTorch,需要确认CUDA驱动和版本是否兼容。 6. 检查是否存在文件名冲突。比如用户可能有一个名为torch.py的文件,导致导入时冲突。 此外,用户可能需要确认他们的Python版本是否与安装的PyTorch版本兼容。PyTorch可能不支持过旧或过新的Python版本,需要查看官方文档的兼容性列表。 如果用户是在特定IDE中运行代码,比如PyCharm或Jupyter Notebook,可能需要配置项目的解释器路径,确保指向正确安装了torch的环境。 最后,如果所有步骤都正确,但问题依旧存在,可能需要进一步检查错误信息的具体内容,或者查看是否有其他依赖项缺失,比如某些系统库。</think>### 解决Python中导入torch模块时出现ModuleNotFoundError的方法 #### 1. 确认PyTorch是否正确安装 **步骤说明** PyTorch安装需使用官方推荐命令,直接使用`pip install torch`可能因版本、依赖或系统兼容性问题失败。 **操作方法** 访问[PyTorch官网](https://pytorch.org/),根据操作系统、Python版本和CUDA版本生成安装命令。例如: ```bash # 无CUDA支持的安装命令 pip3 install torch torchvision torchaudio # 使用conda安装 conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` #### 2. 检查Python环境一致性 **常见问题** 在多个Python环境或虚拟环境中,可能将包安装到了错误的环境。 **验证方法** ```bash # 查看当前Python路径 which python # Linux/macOS where python # Windows # 列出已安装包 pip list | grep torch # Linux/macOS pip list | findstr torch # Windows ``` #### 3. 重新安装或升级PyTorch **操作建议** 若已安装但版本冲突,可尝试强制重装: ```bash pip uninstall torch -y pip install torch --no-cache-dir --upgrade ``` #### 4. 验证安装并检查版本 **测试代码** ```python import torch print(torch.__version__) # 应输出版本号如2.0.1 print(torch.cuda.is_available()) # 检查CUDA是否可用(若安装GPU版本) ``` #### 5. 检查文件名冲突 **特殊场景** 若当前目录存在名为`torch.py`的文件,会导致Python优先导入该文件而非PyTorch库。 **解决方法** 重命名冲突文件或移动其位置。 #### 6. 排查系统依赖问题(Linux/macOS) **案例说明** 某些Linux系统可能缺少动态链接库(如glibc版本过低),需更新系统或使用预编译包: ```bash # Ubuntu/Debian更新系统库 sudo apt-get update && sudo apt-get upgrade ``` #### 7. 使用虚拟环境隔离(推荐) **操作示例** ```bash python -m venv myenv source myenv/bin/activate # Linux/macOS myenv\Scripts\activate # Windows pip install torch # 在虚拟环境中安装 ``` #### 8. 检查IDE/编辑器配置 **典型问题** PyCharm、VSCode等IDE可能未正确配置Python解释器路径。 **解决方法** 在IDE设置中手动指定已安装PyTorch的Python解释器路径。 --- ### 相关问题 1. **如何验证PyTorch是否支持GPU加速?** 运行`print(torch.cuda.is_available())`,返回`True`表示GPU可用[^1]。 2. **conda安装PyTorch时出现HTTP错误怎么办?** 尝试更换conda镜像源,例如: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` 3. **Windows系统安装PyTorch后仍报错如何解决?** 需安装Visual Studio 2019+的C++构建工具,并确保PATH环境变量包含CUDA路径(若使用GPU版本)[^2]。 4. **PyTorch导入错误提示缺少DLL文件怎么办?** 安装Microsoft Visual C++ Redistributable最新版本,或从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit)下载对应CUDA工具包。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值