力扣1143. 最长公共子序列

本文介绍了如何利用动态规划算法解决字符串文本1和文本2之间的最长公共子序列问题,详细阐述了状态转移方程和Solution类中的函数实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划

  • 思路:
    • 假设 dp[i][j] 是 text1[0:i] 和 text2[0:j] 最长公共子序列的长度;
    • 则 dp[0][j] = 0,(空字符串和任何字符串的最长公共子序列的长度都是 0);
    • 同理 dp[i][j] = 0;
    • 状态转移方程:
      • 当 text1[i - 1] = text2[j - 1] 时,dp[i][j] = dp[i - 1][j - 1] + 1;
      • 否则 dp[i][j] 取 dp[i - 1][j]、dp[i][j - 1] 中值大的;
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int m = text1.length();
        int n = text2.length();

        std::vector<std::vector<int>> dp(m + 1, std::vector<int>(n + 1));
        for (int i = 1; i <= m; ++i) {
            char c1 = text1.at(i - 1);
            for (int j = 1; j <= n; ++j ) {
                char c2 = text2.at(j - 1);
                if (c1 == c2) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = std::max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }

        return dp[m][n];
    }
};

——————————————————————————————————

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值