下载必要的模型文件
完成了项目拉取和依赖下载后,我们需要进一步下载模型文件
Faiss(Facebook AI Similarity Search)是由Facebook AI团队开发的高效相似性搜索和密集向量聚类库。它专门优化了大规模向量数据库的搜索和聚类任务,适用于机器学习中的嵌入向量检索场景,如推荐系统、图像检索、自然语言处理等。
这里CPU/GPU版本可以自己选择,GPU版本需要看自己的卡和cuda进行选择
pip install faiss-gpu-cu12
pip install faiss-cpu
检索器(Retriever)
我使用的是e5-base-v2模型和bge-small-zh-v1.5模型
git clone https://hf-mirror.com/intfloat/e5-base-v2
git clone https://hf-mirror.com/BAAI/bge-small-zh-v1.5
生成器(Generator)
使用qwen3-0.6b作为生成器
git lfs install
git clone https://www.modelscope.cn/Qwen/Qwen3-0.6B.git
Git LFS(Large File Storage)是 Git 的一个扩展,用于高效管理大文件。我这里因为之前使用过这个模型,所以没有下载到flashrag项目目录内,后面使用时注意看目录是在哪
examples文件配置
可以看到这里有中英两个demo文件,我们以中文demo为例运行,直接贴出修改后的代码
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")))
import streamlit as st
from flashrag.config import Config
from flashrag.utils import get_retriever, get_generator
from flashrag.prompt import PromptTemplate
config_dict = {
"save_note": "demo",
"generator_model": "qwen-local",
"retrieval_method": "bge-local",
"model2path": {
"bge-local": "D:/PycharmProjects/FlashRAG/bge-small-zh-v1.5",
"qwen-local": "D:/PycharmProjects/Qwen3-0.6B",
},
"corpus_path": "./indexes/general_knowledge.jsonl",
"index_path": "./indexes/bge_flat.index",
}
@st.cache_resource
def load_retriever(_config):
return get_retriever(_config)
@st.cache_resource
def load_generator(_config):
return get_generator(_config)
if __name__ == '__main__':
st.set_page_config(page_title="FlashRAG 中文 Demo", page_icon="⚡")
st.sidebar.title("配置选项")
temperature = st.sidebar.slider("温度系数 (temperature):", 0.01, 1.0, 0.5)
topk = st.sidebar.slider("检索文档数 TopK:", 1, 10, 5)
max_new_tokens = st.sidebar.slider("最大生成长度 (tokens):", 1, 2048, 256)
st.title("⚡FlashRAG 中文 Demo")
st.write("本系统支持中文文档检索与问答生成,支持本地模型。")
query = st.text_area("请输入你的问题:")
config = Config("my_config.yaml", config_dict=config_dict)
generator = load_generator(config)
retriever = load_retriever(config)
system_prompt_rag = (
"你是一个友好的中文智能助手。请根据下方提供的参考文档回答用户的问题。\n\n{reference}"
)
system_prompt_no_rag = (
"你是一个友好的中文智能助手。请根据你的知识回答用户的问题。\n"
)
base_user_prompt = "{question}"
prompt_template_rag = PromptTemplate(config, system_prompt=system_prompt_rag, user_prompt=base_user_prompt)
prompt_template_no_rag = PromptTemplate(config, system_prompt=system_prompt_no_rag, user_prompt=base_user_prompt)
if st.button("生成回答"):
with st.spinner("正在检索并生成回答..."):
retrieved_docs = retriever.search(query, num=topk)
st.subheader("检索参考文档", divider="gray")
for i, doc in enumerate(retrieved_docs):
doc_title = doc.get("title", "无标题")
doc_text = "\n".join(doc["contents"].split("\n")[1:])
expander = st.expander(f"【{i + 1}】:{doc_title}", expanded=False)
with expander:
st.markdown(doc_text, unsafe_allow_html=True)
st.subheader("生成回答结果", divider="gray")
input_prompt_with_rag = prompt_template_rag.get_string(question=query, retrieval_result=retrieved_docs)
response_with_rag = generator.generate(
input_prompt_with_rag, temperature=temperature, max_new_tokens=max_new_tokens
)[0]
st.subheader("带文档的回答:")
st.write(response_with_rag)
input_prompt_without_rag = prompt_template_no_rag.get_string(question=query)
response_without_rag = generator.generate(
input_prompt_without_rag, temperature=temperature, max_new_tokens=max_new_tokens
)[0]
st.subheader("无文档的回答:")
st.write(response_without_rag)
主要的修改在config里,把路径替换成自己的本地模型,当然你网速够快、硬件资源够好,直接从线上加载推荐的模型也是可以的
config_dict = {
"save_note": "demo",
"generator_model": "qwen-local",
"retrieval_method": "bge-local",
"model2path": {
"bge-local": "D:/PycharmProjects/FlashRAG/bge-small-zh-v1.5",
"qwen-local": "D:/PycharmProjects/Qwen3-0.6B",
},
"corpus_path": "./indexes/general_knowledge.jsonl",
"index_path": "./indexes/bge_flat.index",
}
这段代码的作用是让解释器生效,将上级目录的上级目录(即项目根目录)添加到系统的 Python 路径中,不然找不到。
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../")))
除此之外还要新建一个bat文件,用来跑jsonl进而生成所需的index
代码如下:
python -m flashrag.retriever.index_builder ^
--retrieval_method e5 ^
--model_path D:/PycharmProjects/FlashRAG/e5-base-v2 ^
--corpus_path D:/PycharmProjects/FlashRAG/examples/quick_start/indexes/general_knowledge.jsonl ^
--save_dir D:/PycharmProjects/FlashRAG/examples/quick_start/indexes ^
--use_fp16 ^
--max_length 512 ^
--batch_size 256 ^
--pooling_method mean ^
--faiss_type Flat
```bash
python -m flashrag.retriever.index_builder ^
--retrieval_method bge ^
--model_path D:/PycharmProjects/FlashRAG/bge-small-zh-v1.5 ^
--corpus_path D:/PycharmProjects/FlashRAG/examples/quick_start/indexes/general_knowledge.jsonl ^
--save_dir D:/PycharmProjects/FlashRAG/examples/quick_start/indexes ^
--use_fp16 ^
--max_length 512 ^
--batch_size 256 ^
--pooling_method mean ^
--faiss_type Flat
CD到retriever目录下执行run_indexing.bat即可
run之后就会在indexes生成两个index文件
路径为FlashRAG/examples/quick_start/indexes
接着修改examples/quick_start/my_config.yaml文件下的模型,这里我替换为本地模型
save_note: "demo"
generator_model: "qwen-local"
retrieval_method: "bge-local"
model2path:
bge-local: "D:/PycharmProjects/FlashRAG/bge-small-zh-v1.5"
qwen-local: "D:/PycharmProjects/Qwen3-0.6B"
corpus_path: "./data/general_zh.jsonl"
index_path: "./indexes/bge_flat.index"
examples/methods/my_config.yaml
这里的也改改
# ------------------------------------------------Global Paths------------------------------------------------#
# Paths to models
model2path:
e5: "D:/PycharmProjects/FlashRAG/e5-base-v2"
bge: "D:/PycharmProjects/FlashRAG/bge-small-zh-v1.5"
contriever: "facebook/contriever"
llama2-7B-chat: "meta-llama/Llama-2-7b-chat-hf"
llama2-7B: "meta-llama/Llama-2-7b-hf"
llama2-13B: "meta-llama/Llama-2-13b-hf"
llama2-13B-chat: "meta-llama/Llama-2-13b-chat-hf"
llama3-8B-instruct: "meta-llama/Meta-Llama-3-8B-Instruct"
Qwen3-0.6B: "D:/PycharmProjects/Qwen3-0.6B"
# Pooling methods for each embedding model
model2pooling:
e5: "mean"
bge: "cls"
contriever: "mean"
jina: 'mean'
dpr: cls
# Indexes path for retrieval models
method2index:
e5: D:/PycharmProjects/FlashRAG/examples/methods/index/nq/e5_Flat.index
bm25: ~
contriever: ~
# ------------------------------------------------Environment Settings------------------------------------------------#
# Directory paths for data and outputs
data_dir: "dataset/"
save_dir: "output/"
gpu_id: "0,1,2,3"
dataset_name: "nq" # name of the dataset in data_dir
split: [ "test" ] # dataset split to load (e.g. train,dev,test)
# Sampling configurations for testing
test_sample_num: ~ # number of samples to test (only work in dev/test split), if None, test all samples
random_sample: False # whether to randomly sample the test samples
# Seed for reproducibility
seed: 2024
# Whether save intermediate data
save_intermediate_data: True
save_note: 'experiment'
# -------------------------------------------------Retrieval Settings------------------------------------------------#
# If set the name, the model path will be find in global paths
retrieval_method: "e5" # name or path of the retrieval model.
index_path: ~ # set automatically if not provided.
faiss_gpu: False # whether use gpu to hold index
corpus_path: ~ # path to corpus in '.jsonl' format that store the documents
instruction: ~ # instruction for retrieval model
retrieval_topk: 5 # number of retrieved documents
retrieval_batch_size: 256 # batch size for retrieval
retrieval_use_fp16: True # whether to use fp16 for retrieval model
retrieval_query_max_length: 128 # max length of the query
save_retrieval_cache: False # whether to save the retrieval cache
use_retrieval_cache: False # whether to use the retrieval cache
retrieval_cache_path: ~ # path to the retrieval cache
retrieval_pooling_method: ~ # set automatically if not provided
use_reranker: False # whether to use reranker
rerank_model_name: ~ # same as retrieval_method
rerank_model_path: ~ # path to reranker model, path will be automatically find in `retriever_model2path`
rerank_pooling_method: ~
rerank_topk: 5 # number of remain documents after reranking
rerank_max_length: 512
rerank_batch_size: 256 # batch size for reranker
rerank_use_fp16: True
# -------------------------------------------------Generator Settings------------------------------------------------#
framework: vllm # inference frame work of LLM, supporting: 'hf','vllm','fschat'
generator_model: "D:/PycharmProjects/Qwen3-0.6B" # name or path of the generator model
generator_max_input_len: 2048 # max length of the input
generator_batch_size: 2 # batch size for generation, invalid for vllm
generation_params:
do_sample: False
max_tokens: 32
use_fid: False # whether to use FID, only valid in encoder-decoder model
# -------------------------------------------------Refiner Settings------------------------------------------------#
# If set, the refiner will be used to refine the retrieval documents.
refiner_name: ~
refiner_model_path: ~
# Used for extractive method (e.g embedding models)
refiner_topk: 5 # number of remain sentence after refiner
refiner_pooling_method: 'mean' # pooling method of refiner model
refiner_encode_max_length: 256
# Used for abstractive method (e.g. generation models like bart-large-cnn)
refiner_max_input_length: 1024
refiner_max_output_length: 512
# Specify settings for llmlingua
llmlingua_config:
rate: 0.55
condition_in_question: 'after_condition'
reorder_context: 'sort'
dynamic_context_compression_ratio: 0.3
condition_compare: True
context_budget: "+100"
rank_method: 'longllmlingua'
sc_config:
'reduce_ratio': 0.5
# -------------------------------------------------Evaluation Settings------------------------------------------------#
# Metrics to evaluate the result
metrics: [ 'em','f1','acc','precision','recall']
# Specify setting for metric, will be called within certain metrics
metric_setting:
retrieval_recall_topk: 5
save_metric_score: True # whether to save the metric score into txt file
demo文件启动
在quickstart目录下,执行demo文件
streamlit run demo_zh.py
完成启动