前言
仅仅给出,我做该题的历程,做法是按列计算,还有按行计算的方法。也可以利用双指针给本文的动态规划解法进行空间优化。
题目描述:
分析:
错误思路记录(可以不看):刚开始,我的思路被局限在了整体,想法是找出U 型,然后计算出中间的储水量,然后相加,就得到答案了。这样的想法忽略了 ,一个大的U 型里可以有多个U 型,会导致结果偏小。思来想去,有很多尝试,但最终样例通过率在 200/300,发现了剩下的问题,但是无法解决。
也算是见识到了困难题的威力了。
于是看了提示:按列看 这是最简单,最易理解的想法了。
只要看该列的左边和右边是否有比之高的列,有就计算该列能有多个块水,然后统计起来就可以了。
正常思路是向左向右遍历,找到最大的。可以预见到有很多的重复计算。
然后就想到,好像和动态规划有点关系!想着之后,还真是!! 就是一个动态规划的题。
只看找最左边最大值 对与 I 来说,左边最大值 = i-1 的左边最大值 或者 i -1 位置的值。
dp[i] 表示 第 i 列,左边的最大值
可以得到状态转移方程 dp[i] = max (dp[i-1],height[i-1]);
找右边最大值同理。
题解
public static int trap(int[] height) {
// 把眼光放在最小的地方,按列来计算,找到 某列的最左边最高的,和最右边最高的。
int sum = 0;
int[] max_left = new int[height.length];
int[] max_right = new int[height.length];
for (int i = 1; i < max_right.length; i++) {
max_left[i] = Math.max(max_left[i-1],height[i-1]);
}
for (int i = height.length - 2; i >= 0; i--) {
max_right[i] = Math.max(max_right[i + 1], height[i + 1]);
}
// 遍历每一列
for(int i =1;i<height.length - 1;i++)
{
int min = Math.min(max_left[i],max_right[i]);
if(min > height[i])
{
sum += (min - height[i]);
}
}
return sum;
}
当然,该代码还可以优化空间,也可以按照行的方式去计算。
收获
- 有时候直接观察问题局部的特征,以局部的问题,去解决整体的问题,会更加的高效。
- 提供了一个这种题的思路,当整体的考虑很复杂时,就可以尝试从局部查看。