数组中出现次数超过一半(可实现时间复杂度o(n),空间复杂度o(1))的进阶版
鸽巢原理:出现次数大于N/K的元素的个数至多为(M-1)个
思路:
每次从数组中删除k个不同的元素,直到不能再删了为止。那么最后数组中剩余的元素就是候选元素。
因此 可建立一个k长度的map记录从数组中待消的元素,例如数组a={4,3,3,9,4,2,1,4,3,4,9,2} N=12,k=3 ,则每次应该删3个数,依次遍历数组:
| | | |
| | 3 | 3 &
数组中出现次数超过一半(可实现时间复杂度o(n),空间复杂度o(1))的进阶版
鸽巢原理:出现次数大于N/K的元素的个数至多为(M-1)个
思路:
每次从数组中删除k个不同的元素,直到不能再删了为止。那么最后数组中剩余的元素就是候选元素。
因此 可建立一个k长度的map记录从数组中待消的元素,例如数组a={4,3,3,9,4,2,1,4,3,4,9,2} N=12,k=3 ,则每次应该删3个数,依次遍历数组:
| | | |
| | 3 | 3 &