学习率预热(transformers.get_linear_schedule_with_warmaup)

本文介绍了深度学习中一种重要的训练策略——学习率预热与线性衰减。预热阶段,学习率从0线性增加到初始设定值;之后通过`get_linear_schedule_with_warmup`函数创建调度器,使学习率线性降低到0。这种方法有助于模型在训练初期更好地收敛,并在后续训练中避免震荡。关键参数包括预热步骤数、总训练步骤数等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习率预热

  • 在预热期间,学习率从0线性增加到优化器中的初始lr。

  • 在预热阶段之后创建一个schedule,使其学习率从优化器中的初始lr线性降低到0

Parameters

  • optimizer (Optimizer) – 用于调度学习速率的优化器参数

  • num_warmup_steps (int) – 预热阶段的步骤数

  • num_training_steps (int) – 训练的总步骤数

  • last_epoch (int, optional, defaults to -1) – The index of the last epoch when resuming training.

Returns

  • torch.optim.lr_scheduler.LambdaLR with the appropriate schedule.
# training steps 的数量: [number of batches] x [number of epochs].
total_steps = len(train_dataloader) * epochs

# 设计 learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 50, 
                                            num_training_steps = total_steps)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值