pip 在 vs code 终端跟在 本地 终端速度相差很大

同样的 pip install xx 命令,
本地终端平均 500+ KB/S 速度
vs code 终端 几十KB/S

一个local pip install -e . 的库
在 vs code 死活装出来 pip list 里面的 name 是 破折号 gap-rl
在 本地终端就是 下划线 gap_rl

### 如何在 VS Code 终端使用 pip 安装 pandas 库 要在 VS Code终端中成功安装 `pandas` 库,可以按照以下方法操作: #### 1. 验证 Pip 是否已安装 大多数 Python 版本已经预装了 `pip` 工具。可以通过运行以下命令来验证是否已安装 `pip` 并确认其版本号[^2]: ```bash pip --version ``` 如果未找到 `pip` 或显示错误,则可能需要手动安装它。 #### 2. 使用标准方式安装 Pandas 假设系统中已有可用的 `pip` 命令,在 VS Code 的集成终端中可以直接执行以下命令以安装 `pandas`: ```bash pip install pandas ``` 对于特定于 Python 3.x 的环境(尤其是在 macOS 上),建议使用 `pip3` 来避免冲突: ```bash pip3 install pandas ``` 此命令会自动从官方 PyPI 仓库下载并安装最新版的 `pandas` 及其依赖项[^3]。 #### 3. 如果本地有离线包目录 如果有预先准备好的软件包文件夹路径 `/path/to/packages`,则可通过指定该路径完成安装而不访问在线索引服务器: ```bash pip install --no-index --find-links=/path/to/packages pandas ``` 这种方法适用于网络受限或无互联网连接的情况[^1]。 #### 4. 推荐 Anaconda 发行版 (可选方案) 针对数据分析领域的新手而言,采用 Anaconda 是一种更为简便的选择。Anaconda 自带众多科学计算所需的库,其中包括但不限于 NumPy 和 Matplotlib 等工具集[^4]。一旦安装完毕之后无需额外配置即可直接导入这些模块而不需要单独再通过 pip 进行管理。 #### 示例代码片段展示如何加载数据到 DataFrame 中并通过 SQL 查询读取 MySQL 数据表内容如下所示: ```python import pandas as pd from sqlalchemy import create_engine # 初始化数据库引擎对象实例化过程中的参数替换为你自己的实际值. engine = create_engine('mysql+pymysql://username:password@host:port/database_name') sql_query_string ='SELECT * FROM table_name' dataframe_result_set = pd.read_sql_query(sql_query_string , engine) print(dataframe_result_set ) ``` 上述脚本展示了利用 SQLAlchemy 创建与远程关系型数据库之间的链接以及运用 Pandas 将查询结果转换成易于处理的数据结构形式[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

培之

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值