参考视频:
尚硅谷大数据Flink1.17实战教程从入门到精通_哔哩哔哩_bilibili
核心目标:
数据流上的有状态的计算
具体说明: Apache Flink是一个 框架 和 分布式处理引擎,用于对 无界(eg:kafka) 和 有界(eg:文本) 数据流进行有状态计算
有状态: 存储中间的结果或者计算结果,保存在flink内部(内存/RockSDB),定期存储到磁盘
状态在内存中: 速度快,但可靠性差
状态在分布式系统中:速度慢,但可靠性高
特点:
高吞吐和低延迟:
每秒处理数百万个事件,毫秒级延迟
结果的准确性:
Flink提供了事件时间(event-time) 和处理时间(processing-time)语义。对于乱序事件流,事件时间语义仍然能提供一致且准确的结果
精确一次(exactly-once)的状态一致性保证
可以连接到最常用的存储系统:
Kafka,Hive,JDBC,HDFS,Redis等
高可用:
本身高可用的设置,加上与 K8s,YARN和Mesos的紧密集成,再加上从故障中快速恢复和动态扩展任务的能力,Flink能做到以极少的停机时间7*24全天候运行
Flink和SparkStreaming比较
本质:spark streaming是批处理(RDD模型),flink是流处理
Flink | Streaming | |
计算模型 | 流计算 | 微批处理 |
时间语义 | 事件时间,处理时间 | 处理时间 |
窗口 | 多,灵活 | 少,不灵活(窗口必须是批次的整数倍) |
状态 | 有 | 无 |
流式sql | 有 | 无 |
ps:
Flink提供了三种时间语义,以满足不同计算场景的需求:处理时间,事件时间和注入时间。
- 处理时间(Processing Time):一种直观的时间语义,表示数据进入算子并开始处理的实际时间点。
- 事件时间(Event Time):表示事件实际发生的时间,通常在消息的时间戳字段中找到。由于可能会有数据乱序的问题,但它能保证精确度高的计算场景。
- 注入时间(Ingestion Time):介于处理时间和事件时间之间的折中选择,代表数据进入Flink处理系统的时间。