Flink 大数据 学习详情

参考视频:

         尚硅谷大数据Flink1.17实战教程从入门到精通_哔哩哔哩_bilibili

核心目标:

        数据流上有状态计算

        具体说明: Apache Flink是一个 框架分布式处理引擎,用于对 无界(eg:kafka)有界(eg:文本) 数据流进行有状态计算

        有状态: 存储中间的结果或者计算结果,保存在flink内部(内存/RockSDB),定期存储到磁盘

        状态在内存中: 速度快,但可靠性差

        状态在分布式系统中:速度慢,但可靠性高

特点:

        高吞吐和低延迟:

                每秒处理数百万个事件,毫秒级延迟

        结果的准确性:

                Flink提供了事件时间(event-time) 和处理时间(processing-time)语义。对于乱序事件流,事件时间语义仍然能提供一致且准确的结果

精确一次(exactly-once)的状态一致性保证

可以连接到最常用的存储系统:

        Kafka,Hive,JDBC,HDFS,Redis等

高可用:

        本身高可用的设置,加上与 K8s,YARN和Mesos的紧密集成,再加上从故障中快速恢复和动态扩展任务的能力,Flink能做到以极少的停机时间7*24全天候运行

Flink和SparkStreaming比较

        本质:spark streaming是批处理(RDD模型),flink是流处理

Flink Streaming
计算模型 流计算 微批处理
时间语义 事件时间,处理时间 处理时间
窗口 多,灵活 少,不灵活(窗口必须是批次的整数倍)
状态
流式sql

ps:

Flink提供了三种时间语义,以满足不同计算场景的需求:处理时间,事件时间和注入时间。

  • 处理时间(Processing Time):一种直观的时间语义,表示数据进入算子并开始处理的实际时间点。
  • 事件时间(Event Time):表示事件实际发生的时间,通常在消息的时间戳字段中找到。由于可能会有数据乱序的问题,但它能保证精确度高的计算场景。
  • 注入时间(Ingestion Time):介于处理时间和事件时间之间的折中选择,代表数据进入Flink处理系统的时间。

Flink分层API

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值