最优参数地理探测器(OPGD)R语言实现后的结果输出

最优参数地理探测器(OPGD)R语言实现后的结果输出

前言

最优参数地理探测器(OPGD)是对地理探测器(geodetector)的改进,可以实现自动实现自变量数据的最优化离散,关于最优参数地理探测器的实现,可以参考下面的文章:
R语言GD包实现栅格图像地理探测器与参数离散化方法寻优

在R语言中,OPGD模型运行结束后,大部分教程往往只用print(gdm)提取输出结果,如下图所示
在这里插入图片描述
这样提取出来的是全局的结果,并且无法保存到本地excel或者csv中,用class(gdm)函数查看其变量类型可以发现显示的类型是gdm
在这里插入图片描述
然而,我们在实际研究的使用中,往往更加关心的是单因子探测器和交互作用探测器或者生态探测的结果,使用print(gdm)函数固然可以打印全局结果,但后续的作图或者分析时只能一个个复制到excel中,费时费力,有没有什么方法可以直接将单因子探测或者交互作用探测的结果提取到excel中呢?

解决方案

使用下面这段代码可以将单因子探测器的结果输出为dataframe

gdm$Factor.detector$Factor

提取结果如下:
在这里插入图片描述
然后就可以愉快地将其输出到本地了,对于多个变量的情形十分方便。

# 保存单因子结果
write.csv(factor_q, "result1.csv", row.names = FALSE)

在这里插入图片描述
此外,使用下面的代码还可以提取交互作用探测器、生态探测器和风险探测器的结果

# 交互作用探测
gdm$Interaction.detector$Interaction
# 生态探测
gdm$Ecological.detector$Ecological
# 风险探测
gdm$Risk.detector$X1
gdm$Risk.detector$X2
gdm$Risk.detector$X3
gdm$Risk.detector$X4
gdm$Risk.detector$X5
### 关于地理探测器最优参数设置的方法 在R语言环境中,通过`GD`包可以实现地理探测器的操作并自动完成自变量数据的最优离散化方法选取与执行[^1]。对于寻找地理探测器最优参数设置,通常涉及以下几个方面: - **离散化方法的选择**:不同的离散化策略会影响最终的结果准确性。常见的离散化方式有等间距法(equal)、自然断点法(natural breaks)、分位数法(quantile)、几何间隔法(geometric),以及标准差法(standard deviation)。这些方法各有特点,适用于不同类型的数据分布情况。 - **区间数量设定**:合理确定离散化的区间数目也是优化过程中的重要因素之一。一般而言,过多或者过少都会影响因子间关系的有效识别。实践中可以根据实际需求调整范围内的整数值作为候选方案来进行测试比较。 为了找到最适合特定研究场景下的最佳配置组合,可以通过实验对比不同参数组合下模型的表现效果来决定最理想的参数集。下面给出一段利用循环遍历多种可能选项的例子代码片段用于探索性分析: ```r library(GD) # 加载样本数据 data <- read_excel("path/to/your/datafile.xlsx") # 定义待测离散化算法列表 discmethods <- c("equal", "natural", "quantile", "geometric", "sd") # 设定潜在区分数目序列 intervals <- seq(from=4,to=8,by=1) best_params <- list() max_q_statistic_value <- 0 for (m in discmethods){ for (i in intervals){ result <- tryCatch({ gd_result <- gdm(dependent_variable ~ independent_var1 + ... , continuous_variable=c("varname1","varname2"), data=data, discmethod=m, discitv=i) qstat <- summary(gd_result)$q.statistic if(qstat > max_q_statistic_value){ best_params <<- list(method=m,interval=i,qvalue=qstat) max_q_statistic_value <<- qstat } }, error=function(e){cat("Error occurred:", conditionMessage(e), "\n")}) } print(best_params) ``` 上述脚本会尝试每种离散化技术和对应的分割区间,并记录获得最高Q统计量的那个配置作为推荐的最佳参数设置[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值