目录
前言
随着AI的迅速发展,主流的深度学习框架Pytorch和TensorFlow越来越被人熟知,笔者最近也需要基于Ubuntu服务器进行深度学习环境的搭建,作为一名刚涉及该领域的Green Bird,自然遇到了很多问题,但自我探索和他人帮助下也有了一些浅薄理解。
关于Pytorch和TensorFlow的区别和联系,可见如何对比目前最流行的两个深度学习框架:TensorFlow和PyTorch。
概念
网络上目前的相关教程相当繁杂,所以在TensorFlow环境的搭建之前,读者应先确定以下几点是否了解清楚。
- 关注目前搭建的操作系统以及对应的版本:
Linux
,Windows
,macOS
,不同系统的操作斜体样式步骤有很大差别 - 关注目前操作对象的版本以及相互之间的依赖关系,例如关于
Cuda
和Cudnn
的版本以及之间的依赖关系 - 关注目前版本是支持CPU的还是GPU的,或者是共同支持的
- 关注文件下载的网络问题,很多报错都是来自于网络以及源的问题
名词解释
pip
pip
是 Python 的包管理工具,用于安装、升级、卸载 Python 包或模块。它可以自动解决包之间的依赖关系,并且可以从 Python Package Index (PyPI) 以及其他源获取和安装包。
个人认为,Conda一定程度上代替了一部分pip的功能。
Anaconda
Anaconda
是一个开源的 Python 和 R 语言发行版,用于数据科学、机器学习、科学计算和大数据处理。它包含了许多常用的数据科学和机器学习库,如 NumPy、Pandas、Matplotlib、Scikit-learn 等,以及 Jupyter Notebook 等工具。
那么为什么一定要在此处使用Anaconda呢?
集成环境
:Anaconda 提供了一个集成的环境,包括 Python 或 R 解释器、常用库、开发工具和环境管理工具,使得在数据科学和机器学习项目中更加方便快捷包管理
:Anaconda 提供了 Conda 包管理器,可以方便地安装、更新、管理各种库和工具,解决了依赖关系和版本兼容性的问题。个人认为这是选择使用它来管理机器学习库的最重要的优点之一环境管理
:Anaconda 允许创建多个独立的环境,每个环境可以有自己的库版本和依赖关系,可以避免不同项目之间的冲突。个人认为这是选择使用它来管理机器学习库的最重要的优点之二跨平台支持
:Anaconda 可以在 Windows、macOS 和 Linux 等多个操作系统上运行,为用户提供了跨平台的数据科学和机器学习开发环境
conda
conda
是一个开源的包管理和环境管理系统,主要用于数据科学、机器学习和科学计算领域。它是 Anaconda 发行版的核心组件之一,也可以作为独立的软件包安装。
简单来说,conda是Anaconda的核心,以及命令实现。
GPU
GPU
(Graphics Processing Unit,图形处