年度作物类型分布图(1961-2022)

D245

年度作物类型分布图(1961-2022)

数据简介

      今天我们分享的是数据是年度作物分布图,该数据集包括中国、非洲、美国三个地区的作物,其中中国包含14种作物从1980-2022年的数据集,非洲包含42种作物从1961–2022年,美国包含15 种作物从2008–2022年的数据,原始数据为所有波段一起的栅格数据,每个波段分别是一种作物类型,我们将其分为各个单波段的数据并翻译成中文,以便于研究和使用。

      该研究通过融合机器学习与统计分解,突破了长期、可比的年度作物精细制图瓶颈。其生成的42年非洲与43年中国高分辨率作物地图,为动态评估粮食安全(如区域产量波动)、量化农业环境足迹(如水资源压力、生物多样性影响)及优化农业政策(如灾害预警、跨境供应链管理)提供了关键数据基础,尤其填补了发展中地区历史作物动态监测的空白。

数据详情

数据来源:Li, X., Yu, L., Du, Z. et al. Crop Statistic to Annual Map: Tracking spatiotemporal dynamics of crop-specific areas through machine learning and statistics disaggregating. Sci Data 12, 1249 (2025).

数据时间:中国:1980-2022

               非洲:1961–2022

               美国:2008–2022

数据精度:10km

数据范围:中国、非洲、美国

数据格式:Tif

数据概览

该数据集包含中国、非洲、美国三个地区的数据,其中中国地区包含从1980-2022年共14种作物

非洲包含从1961-2022年共42种作物

美国包含从2008-2022年共15种作物

数据概览如下:

图片

中国2022年大豆分布图

数据引用

[1]Li, X., Yu, L., Du, Z. et al. Crop Statistic to Annual Map: Tracking spatiotemporal dynamics of crop-specific areas through machine learning and statistics disaggregating. Sci Data 12, 1249 (2025).

<think>好的,我现在需要处理用户关于印度水稻分布制图产品及相关数据资源的查询。首先,用户希望得到一个列表或可用资源,所以我的回答需要涵盖多个数据源和产品,并详细说明每个资源的特点、获取方式等。 根据任务要求,我需要调用网络搜索工具进行检索,整合信息后生成详细清晰的回答。同时,要注意避免使用第一人称和步骤词汇,分点说明,每个方法或步骤之间换行。此外,回答中如果有代码或公式,必须正确格式化,但这个问题可能涉及较少。最后,生成相关问题部分,必须基于原回答内容,列出三个相关的问题。 首先,我需要确定印度水稻分布制图的主要数据来源。可能包括政府机构、国际组织、卫星遥感数据平台以及科研项目等。比如,印度空间研究组织(ISRO)可能提供相关的地理空间数据,NASA的MODIS或Landsat数据也可能被用于水稻制图。此外,国际粮食政策研究所(IFPRI)或全球农业监测计划(GEOGLAM)可能有相关数据集。 接下来,我需要检查每个可能的资源是否确实提供印度的水稻分布数据。例如,Bhuvan作为ISRO的地理门户,可能会有高分辨率的卫星影像和专题地图。NASA的Earthdata Search平台提供MODIS和VIIRS数据,这些可用于监测作物生长。全球水稻科学合作组织(CORRA)可能发布区域性的水稻分布数据。此外,国际应用生物科学中心(CABI)的作物分布地图和粮农组织的WaPOR数据库也可能相关。 还需要考虑数据的分辨率、时间覆盖范围、访问方式(是否开放获取)以及数据的格式(如GIS兼容的Shapefile或GeoTIFF)。例如,Sentinel-2数据通过Google Earth Engine可进行实时分析,而GEOGLAM的数据可能更侧重于农业监测指标。 在整合信息时,要确保每个资源单独成段,使用标题加粗,描述其特点和使用方法。例如,Bhuvan平台提供的数据可能需要注册下载,而Google Earth Engine则提供API接口用于分析。 同时,要注意用户可能需要的数据处理工具,比如提到的Python代码示例,展示如何使用卫星数据提取水稻种植区。这部分需要正确使用代码块格式,并确保语言类型注明。 最后,生成相关问题时要基于用户的原问题,可能的后续问题包括数据下载的具体步骤、不同数据源的优缺点比较,或者特定区域的数据获取方式。确保问题有逻辑关联,并且数量至少三个。 现在,我需要将以上思路整理成符合要求的回答结构,确保每个部分清晰,没有步骤词汇,分点说明,并在最后添加相关问题部分。</think>**印度水稻分布制图产品与数据资源** **1. ISRO Bhuvan 地理门户** 印度空间研究组织(ISRO)的Bhuvan平台提供高分辨率卫星影像和专题地图,包含水稻种植区空间分布数据。用户可通过平台下载Shapefile或GeoTIFF格式的农业用地分类数据,支持时间序列分析。访问需注册账户,数据覆盖全印度主要水稻产区。 **2. NASA Earthdata 与 MODIS/VIIRS 产品** NASA的MODIS(分辨率500m)和VIIRS(375m)传感器数据可通过Earthdata Search平台获取。关键产品包括: - **MCD12Q1**:年度土地覆盖分类数据,含农田类别。 - **VNP21A2**:热红外数据辅助水稻水分胁迫监测。 使用以下代码可提取印度区域数据: ```python import ee ee.Initialize() india_roi = ee.FeatureCollection("FAO/GAUL/2015/level0").filter(ee.Filter.eq('ADM0_NAME', 'India')) modis_data = ee.ImageCollection("MODIS/006/MCD12Q1").filterBounds(india_roi) ``` **3. GEOGLAM Crop Monitor 农业监测系统** 全球农业监测计划(GEOGLAM)发布南亚地区水稻种植面积与长势报告,整合多源卫星数据(Sentinel-1/2, Landsat)。数据可通过其官网获取,支持动态监测水稻物候期(如播种、抽穗期),适用于产量预测。 **4. 国际水稻研究所(IRRI)地图工具** IRRI的**Rice Atlas**平台提供印度各邦水稻种植面积、品种和季风期分布数据,包含历史统计与空间插值地图。数据格式为CSV和GeoJSON,支持按行政区划筛选。 **5. Sentinel-2 时序分析** 利用欧空局Sentinel-2数据(10m分辨率)结合NDVI指数($NDVI = \frac{NIR - Red}{NIR + Red}$)可生成高精度水稻分布图。Google Earth Engine提供预处理数据与算法库: ```javascript var s2 = ee.ImageCollection("COPERNICUS/S2_SR") .filterDate('2023-01-01', '2023-12-31') .filterBounds(india_roi); var ndvi = s2.mean().normalizedDifference(['B8', 'B4']); ``` **6. 印度农业普查数据(DAC&FW)** 印度农业与农民福利部发布的年度报告包含水稻种植面积统计(按邦/县划分),数据以PDF和Excel格式公开。结合GIS边界文件可生成矢量分布图---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值