#include<bits/stdc++.h>
using namespace std;
long long q,n,m,yh[1005][1005],ans=0,front[1005][1005],mod=19260817;
inline int read(){
int k=0,f=1;
char c=getchar();
for(;!isdigit(c);c=getchar())
if(c=='-')
f=-1;
for(;isdigit(c);c=getchar())
k=k*10+c-'0';
return k*f;
}
int main(){
q=read();
yh[1][0]=1;yh[1][1]=1;
for(int i=2;i<=1000;i++){
for(int j=0;j<=i;j++){
yh[i][j]=(yh[i-1][j]+yh[i-1][j-1])%mod;
}
}
for(int i=1;i<=1000;i++){
for(int j=1;j<=1000;j++){
front[i][j]=((yh[i][j]+front[i][j-1])+(front[i-1][j]-front[i-1][j-1]));
}
}
while(q--){
ans=0;
n=read();
m=read();
cout<<front[m][n]%mod<<endl;
}
}
/*
对于这种数学题 ,我们可 以找到一般规律。
以下是我个人经验:
举一个例子:每次当我们发现某个项与前面的项 又包含或被包含关系,我们可以联想到斐波那契数列, 即使答案可能并不是 我们所想的那样,
却一定与这种数列有关系。
再举一个例子: 组合数,每次当我们发现这个公式时,我们便可以联想到 一个奇妙的东西:杨辉三角,每一个组合数序列必然与杨辉三角有着千丝万缕的关系
至于找规律的方法,只有一种
首先设置几个循环 ,让这些循环包含住每一种情况,一一输出,最后瞪眼在一堆数据中找到灵感
至于优化的方法,我们应合理运用储存数据结构,所以一些较高难度的数学题是与数据结构放在一起考的
比如上代码我所使用插分,将我的时间复杂度瞬间降低了一个档次,因此,我们在学好算法的同时也要注意数据结构的使用
*/