T2

#include<bits/stdc++.h>
using namespace std;
long long q,n,m,yh[1005][1005],ans=0,front[1005][1005],mod=19260817;
inline int read(){
    int k=0,f=1;
    char c=getchar();
    for(;!isdigit(c);c=getchar())
      if(c=='-')
        f=-1;
    for(;isdigit(c);c=getchar())
      k=k*10+c-'0';
    return k*f;
}
int main(){
    q=read();
    yh[1][0]=1;yh[1][1]=1;
    for(int i=2;i<=1000;i++){
        for(int j=0;j<=i;j++){
            yh[i][j]=(yh[i-1][j]+yh[i-1][j-1])%mod;
        }
    }
    for(int i=1;i<=1000;i++){
        for(int j=1;j<=1000;j++){
            front[i][j]=((yh[i][j]+front[i][j-1])+(front[i-1][j]-front[i-1][j-1]));
        }
    }
    while(q--){
        ans=0;
        n=read();
        m=read();
        cout<<front[m][n]%mod<<endl;
    }
}
/*
对于这种数学题 ,我们可 以找到一般规律。
以下是我个人经验: 
举一个例子:每次当我们发现某个项与前面的项 又包含或被包含关系,我们可以联想到斐波那契数列, 即使答案可能并不是 我们所想的那样,
却一定与这种数列有关系。
再举一个例子: 组合数,每次当我们发现这个公式时,我们便可以联想到 一个奇妙的东西:杨辉三角,每一个组合数序列必然与杨辉三角有着千丝万缕的关系
至于找规律的方法,只有一种
 首先设置几个循环 ,让这些循环包含住每一种情况,一一输出,最后瞪眼在一堆数据中找到灵感
  至于优化的方法,我们应合理运用储存数据结构,所以一些较高难度的数学题是与数据结构放在一起考的 
  比如上代码我所使用插分,将我的时间复杂度瞬间降低了一个档次,因此,我们在学好算法的同时也要注意数据结构的使用 
*/

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值