题意
给你一台无刻度的天平和两种质量分别为 A,BA,B 的砝码,使用 xx 个 砝码, yy 个 砝码,称出质量为 CC 的物品(砝码可以放在天平的任意一侧)。求当 值最小时 Ax+ByAx+By 最小的 x,yx,y 值。
0<A,B≤100000<A,B≤10000
0<C≤500000<C≤50000
思路
将物品放在左侧,设右侧放了 k1k1 个 AA 砝码, 个 BB 砝码。求出特解 ,写出通解 k1=k′1+bKk1=k1′+bK , k2=k′2−aKk2=k2′−aK ,题目求的就是 |k1|+|k2||k1|+|k2| 的最小值。 以 KK 为自变量画出函数图像,是一个有两个折点的直线,这两个折点分别是 取最小值的情况,而左边的折点以左,右边的折点以右都是上升趋势,所以只用在两个折点各自的附近找最优解即可。
代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
#define Abs(x) ((x>0)?(x):-(x))
typedef long long LL;
using namespace std;
LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
return;
}
void Exgcd(LL &A,LL &k1,LL &B,LL &k2,LL &C)
{
LL g=gcd(A,B);
A/=g,B/=g,C/=g;
exgcd(A,B,k1,k2);
k1*=C,k2*=C;
}
int main()
{
LL A,B,C;
while(scanf("%lld%lld%lld",&A,&B,&C)&&(A|B|C))
{
LL k1,k2,ans1=1e15,ans2=1e15;
Exgcd(A,k1,B,k2,C);
LL t1=-k1/B,t2=k2/A;
FOR(i,t1-1,t1+1)
{
LL ans_1=Abs(k1+B*i),ans_2=Abs(k2-A*i);
if(ans_1+ans_2<ans1+ans2||ans_1+ans_2==ans1+ans2&&A*ans_1+B*ans_2<A*ans1+B*ans2)
ans1=ans_1,ans2=ans_2;
}
FOR(i,t2-1,t2+1)
{
LL ans_1=Abs(k1+B*i),ans_2=Abs(k2-A*i);
if(ans_1+ans_2<ans1+ans2||ans_1+ans_2==ans1+ans2&&A*ans_1+B*ans_2<A*ans1+B*ans2)
ans1=ans_1,ans2=ans_2;
}
printf("%lld %lld\n",ans1,ans2);
}
return 0;
}