POJ-2142 The Balance(扩展欧几里得)

本文探讨了如何利用特定质量的砝码组合称出指定重量的物品,通过数学方法找到所需最少数量的砝码及其最优配置。介绍了使用扩展欧几里得算法求解特解并确定通用解的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

给你一台无刻度的天平和两种质量分别为 A,BA,B 的砝码,使用 xxA 砝码, yyB 砝码,称出质量为 CC 的物品(砝码可以放在天平的任意一侧)。求当 x+y 值最小时 Ax+ByAx+By 最小的 x,yx,y 值。
0<A,B100000<A,B≤10000
0<C500000<C≤50000

思路

将物品放在左侧,设右侧放了 k1k1AA 砝码, k2BB 砝码。求出特解 k1,k2 ,写出通解 k1=k1+bKk1=k1′+bK , k2=k2aKk2=k2′−aK ,题目求的就是 |k1|+|k2||k1|+|k2| 的最小值。 以 KK 为自变量画出函数图像,是一个有两个折点的直线,这两个折点分别是 |k1|,|k2| 取最小值的情况,而左边的折点以左,右边的折点以右都是上升趋势,所以只用在两个折点各自的附近找最优解即可。

代码

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
#define Abs(x) ((x>0)?(x):-(x))
typedef long long LL;
using namespace std;
LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
void exgcd(LL a,LL b,LL &x,LL &y)
{
    if(!b){x=1,y=0;return;}
    exgcd(b,a%b,y,x);y-=a/b*x;
    return;
}
void Exgcd(LL &A,LL &k1,LL &B,LL &k2,LL &C)
{
    LL g=gcd(A,B);
    A/=g,B/=g,C/=g;
    exgcd(A,B,k1,k2);
    k1*=C,k2*=C;
}

int main()
{
    LL A,B,C;
    while(scanf("%lld%lld%lld",&A,&B,&C)&&(A|B|C))
    {
        LL k1,k2,ans1=1e15,ans2=1e15;
        Exgcd(A,k1,B,k2,C);
        LL t1=-k1/B,t2=k2/A;
        FOR(i,t1-1,t1+1)
        {
            LL ans_1=Abs(k1+B*i),ans_2=Abs(k2-A*i);
            if(ans_1+ans_2<ans1+ans2||ans_1+ans_2==ans1+ans2&&A*ans_1+B*ans_2<A*ans1+B*ans2)
                ans1=ans_1,ans2=ans_2;
        }
        FOR(i,t2-1,t2+1)
        {
            LL ans_1=Abs(k1+B*i),ans_2=Abs(k2-A*i);
            if(ans_1+ans_2<ans1+ans2||ans_1+ans_2==ans1+ans2&&A*ans_1+B*ans_2<A*ans1+B*ans2)
                ans1=ans_1,ans2=ans_2;
        }
        printf("%lld %lld\n",ans1,ans2);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值