jetson系列开发板生成.engine部署

该文介绍了如何在Jetson系列开发板上使用TensorRTx的Yolov5实现模型转换,包括从训练好的.pt文件生成.wts权重文件,然后在TensorRTx的构建目录下编译并生成Engine,用于加速推理过程。步骤涉及下载TensorRTx源码、修改模型参数、编译项目以及使用Python脚本转换权重等操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

jetson系列开发板 生成engine

1. 下载 tensorrtx 至 NX

这个tensorrtx的版本号要和训练时的版本号一样。

git clone -b yolov5-v5.0 https://github.com/wang-xinyu/tensorrtx.git

2. 修改 yololayer.h 中的参数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-76KPGlS4-1689562839272)(C:\Users\Administrator\AppData\Roaming\Typora\typora-user-images\image-20221025185746573.png)]

训练时有几类就将 CLASS_NUM 修改为几。

static constexpr int CLASS_NUM = 80; 

3. 编译 tensorrtx/yolov5

cd tensorrtx/yolov5
mkdir build
cd build
cmake ..
make

4. 在训练yolov5的平台上生成 .wts文件

import sys
import argparse
import os
import struct
import torch
from utils.torch_utils import select_device


def parse_args():
    parser = argparse.ArgumentParser(description='Convert .pt file to .wts')
    parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
    parser.add_argument('-o', '--output', help='Output (.wts) file path (optional)')
    args = parser.parse_args()
    if not os.path.isfile(args.weights):
        raise SystemExit('Invalid input file')
    if not args.output:
        args.output = os.path.splitext(args.weights)[0] + '.wts'
    elif os.path.isdir(args.output):
        args.output = os.path.join(
            args.output,
            os.path.splitext(os.path.basename(args.weights))[0] + '.wts')
    return args.weights, args.output


pt_file, wts_file = parse_args()

# Initialize
device = select_device('cpu')
# Load model
model = torch.load(pt_file, map_location=device)  # load to FP32
model = model['ema' if model.get('ema') else 'model'].float()

# update anchor_grid info
anchor_grid = model.model[-1].anchors * model.model[-1].stride[...,None,None]
# model.model[-1].anchor_grid = anchor_grid
delattr(model.model[-1], 'anchor_grid')  # model.model[-1] is detect layer
model.model[-1].register_buffer("anchor_grid",anchor_grid) #The parameters are saved in the OrderDict through the "register_buffer" method, and then saved to the weight.

model.to(device).eval()

with open(wts_file, 'w') as f:
    f.write('{}\n'.format(len(model.state_dict().keys())))
    for k, v in model.state_dict().items():
        vr = v.reshape(-1).cpu().numpy()
        f.write('{} {} '.format(k, len(vr)))
        for vv in vr:
            f.write(' ')
            f.write(struct.pack('>f' ,float(vv)).hex())
        f.write('\n')

命令行执行

python gen_wts.py -w xxxx.pt -o xxxx.wts

4. copy .wts 文件到tensorrtx/yolov5/build目录下

5. 在build目录下执行下面语句生成 engine

sudo ./yolov5 -s hat.wts hat.engine s //需要注意的是最后一个参数s,这个参数表示是用yolov5的哪个模型训练的(s,m,l...)
### Jetson Orin上YOLOv8部署与优化 #### 一、准备工作 为了在Jetson Orin设备上成功部署并优化YOLOv8模型,需先完成一系列准备活动。这包括但不限于安装必要的依赖库以及设置适合的工作环境。 对于Jetson系列开发板而言,在开始任何深度学习框架的应用之前,确保CUDA、cuDNN版本兼容是非常重要的[^1]。此外,建议通过Anaconda来管理Python包及其运行时环境,这样可以有效减少不同项目间可能存在的冲突问题。 #### 二、转换模型权重文件 当目标是在边缘计算平台上高效执行神经网络推断任务时,通常会将原始训练好的PyTorch(.pt)格式权重量化或转成其他更适合硬件加速器处理的形式。针对本案例中的YOLOv8模型来说,可以通过编写脚本来提取参数,并将其保存为特定于TensorRT使用的权重文件(wts),以便后续加载到INT8/FP16精度下的引擎中去。 ```bash python gen_wts.py -w yolov8.pt -o yolov8.wts ``` 上述命令假设`gen_wts.py`是一个自定义工具,用于读取`.pt`格式的预训练模型并将其中的张量序列化至`.wts`文本文件内[^2]。 #### 三、构建TensorRT推理引擎 一旦拥有了适配后的权重数据,下一步就是基于这些信息创建高效的推理引擎实例。这里推荐采用官方提供的trtexec工具来进行快速验证: ```bash trtexec --onnx=yolov8.onnx --saveEngine=yolov8.trt --workspace=4096 --fp16 ``` 此过程涉及到了ONNX作为中间表示形式,因此如果原生支持导出的话可以直接跳过前一步骤;否则就需要额外借助torch.onnx.export()函数辅助完成了。注意这里的选项可以根据实际需求调整,比如是否开启半精度浮点运算(`--fp16`)或是指定更大的工作空间大小以容纳更复杂的层结构(`--workspace`)等。 #### 四、集成C++ API实现高性能调用 最后也是最关键的一环——如何让应用程序能够充分利用已编译好得TRT Engine?答案就在于利用NVIDIA所提供的C++接口APIs。下面给出了一段简单的代码片段展示怎样初始化Session对象进而发起预测请求: ```cpp #include "NvInfer.h" // ...省略部分头文件引入... int main(){ // 创建Logger实例... // 反序列化先前生成engine文件 std::ifstream file("yolov8.trt", std::ios::binary); nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(gLogger); assert(runtime != nullptr); nvinfer1::ICudaEngine* engine; if (file.good()){ size_t size{0}; char * trtModelStream{nullptr}; file.seekg(0, file.end); size = file.tellg(); file.seekg(0, file.beg); trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); file.close(); engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr); delete[] trtModelStream; }else{ gLogError << "Unable to open model file." << endl; return -1; } // 构建ExecutionContext并绑定输入输出缓冲区... } ``` 以上即是从零开始直至最终能够在Jetson Orin平台之上流畅运行经过高度定制化的YOLOv8检测算法的大致流程概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ap21ril

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值