onnx模型转化总结

onnx模型转化总结

最近接手了pytorch模型转onnx的任务,需要将现有pt格式的翻译模型转换为onnx,以方便线上使用。由于机器翻译模型是生成式的,原始方法是将encoder和decoder分别转换为onnx模型,再嵌套beam_search逻辑实现译文生成,但该方法会造成推理速度变慢的问题。因为onnx模型推理是在gpu中的,而beam搜索是在cpu中完成的,因此翻译过程中会反复调用cpu,容易造成延迟问题。由此开发了onnx_for_search脚本,首先对encoder和decoder分别使用jit.trace创建推理图,随后将其嵌入到beam_search逻辑中,使用jit.script对beam函数转换,成功实现了机器翻译的gpu闭环onnx模型实现。
由于onnx不支持torch中的部分方法和操作,因此在onnx模型脚本开发过程中,遇到了很多问题,在此总结以便后续参考。所有问题总结如下:
1、模型主干forward的接受参数应为torch.tensor,forward中如需调用其他函数,实参传入时也应转换为tensor,即便实参只是单个int或float变量;
2、函数调用不能传入encoder或decoder模型,按照1的说法,传入格式必须为tensor,模型传入后也会被当作tensor处理,发生意外错误;
3、不支持字典、列表等格式,不能在函数中定义字典或列表,但调用另一个函数时,该函数内可以;
4、torch.repeat、torch.new_tensor、torch.new_full方法均不支持,需要使用cat、tensor、full等操作替换;
5、具备size属性的空张量,无法在函数中做reshape操作;
6、子调用函数中如果有list,不支持对其中元素赋值,但可以拼接或分片。

<think>嗯,用户想了解如何将PyTorch模型转换为ONNX格式,我需要一步步理清楚这个过程。首先,我应该回忆一下PyTorch导出ONNX的基本步骤。记得需要用torch.onnx.export函数,对吧?这个函数需要模型、输入样例和输出路径。然后,参数方面,比如input_names和output_names,这些是必须的吗? 对了,用户可能对动态轴设置不太清楚,这部分需要详细说明。比如,在处理不同批量大小的输入时,dynamic_axes参数怎么用。还有,验证转换后的模型是否正确,可能需要用ONNX Runtime来检查输出的一致性。这部分可能需要提醒用户安装onnxruntime包。 另外,用户提到最佳实践,我应该包括哪些内容呢?比如输入样例的规范化、使用最新版本的库、验证模型、文档记录这些点。可能还要提到模型简化工具,比如onnx-simplifier,这对优化模型结构有帮助。 用户的问题里还引用了两个站内引用,看起来是关于模型训练和数据处理的。虽然和模型转换不直接相关,但可能在转换前的模型准备阶段需要注意数据集的处理,比如输入输出的形状是否符合预期。例如引用[2]提到训练集的形状是(25000,),这里可能需要确认模型输入是否符合ONNX的要求,比如是否添加了批次维度。 还要考虑用户可能的错误,比如模型中有动态操作导致导出失败。这时候需要建议他们检查模型结构,或者使用opset_version参数调整。另外,是否支持所有PyTorch层?可能需要提醒用户某些自定义层可能需要额外处理。 最后,生成相关问题的时候,要围绕ONNX的部署、性能优化、支持的框架、转换失败处理等方面提问,这样能帮助用户进一步探索相关主题。</think>以下是将PyTorch模型转换为ONNX格式的完整指南及最佳实践: ### 一、基础转换流程 1. **安装依赖** ```bash pip install onnx onnxruntime ``` 2. **核心转换代码** ```python import torch import torch.onnx model = YourPyTorchModel().eval() # 确保模型处于评估模式 dummy_input = torch.randn(1, 3, 224, 224) # 匹配模型输入尺寸的虚拟数据 # 执行转换 torch.onnx.export( model, dummy_input, "model.onnx", export_params=True, # 包含模型参数 opset_version=13, # 推荐使用最新稳定版本 input_names=["input"], output_names=["output"], dynamic_axes={ "input": {0: "batch_size"}, # 支持动态批量维度 "output": {0: "batch_size"} } ) ``` 3. **验证转换结果** ```python import onnx onnx_model = onnx.load("model.onnx") onnx.checker.check_model(onnx_model) ``` ### 二、最佳实践 1. **输入样例标准化** - 使用与生产环境一致的输入维度 - 处理动态维度时显式声明dynamic_axes参数[^1] 2. **版本控制** ```python print(torch.__version__) # 推荐≥1.8.0 print(onnx.__version__) # 推荐≥1.10.0 ``` 3. **模型验证** ```python import onnxruntime as ort # 对比原始模型ONNX模型的输出 ort_session = ort.InferenceSession("model.onnx") outputs = ort_session.run(None, {"input": dummy_input.numpy()}) torch_output = model(dummy_input) print("最大误差:", np.max(np.abs(outputs[0] - torch_output.detach().numpy()))) ``` 4. **模型优化** - 使用onnx-simplifier简化模型结构: ```bash python -m onnxsim input.onnx output.onnx ``` ### 三、常见问题处理 | 问题类型 | 解决方案 | |---------|----------| | 动态控制流报错 | 重写模型逻辑避免动态分支 | | 自定义算子缺失 | 实现自定义算子或选择支持的操作集 | | 形状推断错误 | 显式指定输入/输出形状 |
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值